# Extensions 1→N→G→Q→1 with N=D4×C32 and Q=C2

Direct product G=N×Q with N=D4×C32 and Q=C2
dρLabelID
D4×C3×C672D4xC3xC6144,179

Semidirect products G=N:Q with N=D4×C32 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C32)⋊1C2 = C3×D4⋊S3φ: C2/C1C2 ⊆ Out D4×C32244(D4xC3^2):1C2144,80
(D4×C32)⋊2C2 = C327D8φ: C2/C1C2 ⊆ Out D4×C3272(D4xC3^2):2C2144,96
(D4×C32)⋊3C2 = C3×S3×D4φ: C2/C1C2 ⊆ Out D4×C32244(D4xC3^2):3C2144,162
(D4×C32)⋊4C2 = C3×D42S3φ: C2/C1C2 ⊆ Out D4×C32244(D4xC3^2):4C2144,163
(D4×C32)⋊5C2 = D4×C3⋊S3φ: C2/C1C2 ⊆ Out D4×C3236(D4xC3^2):5C2144,172
(D4×C32)⋊6C2 = C12.D6φ: C2/C1C2 ⊆ Out D4×C3272(D4xC3^2):6C2144,173
(D4×C32)⋊7C2 = C32×D8φ: C2/C1C2 ⊆ Out D4×C3272(D4xC3^2):7C2144,106
(D4×C32)⋊8C2 = C32×C4○D4φ: trivial image72(D4xC3^2):8C2144,181

Non-split extensions G=N.Q with N=D4×C32 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C32).1C2 = C3×D4.S3φ: C2/C1C2 ⊆ Out D4×C32244(D4xC3^2).1C2144,81
(D4×C32).2C2 = C329SD16φ: C2/C1C2 ⊆ Out D4×C3272(D4xC3^2).2C2144,97
(D4×C32).3C2 = C32×SD16φ: C2/C1C2 ⊆ Out D4×C3272(D4xC3^2).3C2144,107

׿
×
𝔽