Copied to
clipboard

G = C12.D6order 144 = 24·32

24th non-split extension by C12 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C12.24D6, C62.14C22, (C3×D4)⋊3S3, (C2×C6).6D6, D42(C3⋊S3), (D4×C32)⋊6C2, C327D44C2, C35(D42S3), C324Q86C2, C3210(C4○D4), C6.35(C22×S3), (C3×C6).34C23, (C3×C12).24C22, C3⋊Dic3.18C22, (C4×C3⋊S3)⋊4C2, C4.5(C2×C3⋊S3), (C2×C3⋊Dic3)⋊7C2, C22.1(C2×C3⋊S3), C2.7(C22×C3⋊S3), (C2×C3⋊S3).18C22, SmallGroup(144,173)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C12.D6
C1C3C32C3×C6C2×C3⋊S3C4×C3⋊S3 — C12.D6
C32C3×C6 — C12.D6
C1C2D4

Generators and relations for C12.D6
 G = < a,b,c | a12=b6=1, c2=a6, bab-1=a7, cac-1=a-1, cbc-1=a6b-1 >

Subgroups: 346 in 120 conjugacy classes, 47 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2×C4, D4, D4, Q8, C32, Dic3, C12, D6, C2×C6, C4○D4, C3⋊S3, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C3⋊Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, D42S3, C324Q8, C4×C3⋊S3, C2×C3⋊Dic3, C327D4, D4×C32, C12.D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C3⋊S3, C22×S3, C2×C3⋊S3, D42S3, C22×C3⋊S3, C12.D6

Character table of C12.D6

 class 12A2B2C2D3A3B3C3D4A4B4C4D4E6A6B6C6D6E6F6G6H6I6J6K6L12A12B12C12D
 size 112218222229918182222444444444444
ρ1111111111111111111111111111111    trivial
ρ211-11-11111-111-111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ311-1111111-1-1-11-11111-1-11111-1-1-1-1-1-1    linear of order 2
ρ41111-111111-1-1-1-11111111111111111    linear of order 2
ρ511-1-111111111-1-11111-1-1-1-1-1-1-1-11111    linear of order 2
ρ6111-1-11111-1111-1111111-1-1-1-111-1-1-1-1    linear of order 2
ρ7111-111111-1-1-1-11111111-1-1-1-111-1-1-1-1    linear of order 2
ρ811-1-1-111111-1-1111111-1-1-1-1-1-1-1-11111    linear of order 2
ρ922-2-20-1-12-1200002-1-1-11111-21-212-1-1-1    orthogonal lifted from D6
ρ10222-20-12-1-1-20000-1-1-12-121-211-1-1111-2    orthogonal lifted from D6
ρ1122-220-12-1-1-20000-1-1-121-2-12-1-111111-2    orthogonal lifted from D6
ρ1222220-1-1-1220000-1-12-1-1-1-1-1-12-12-12-1-1    orthogonal lifted from S3
ρ1322-2202-1-1-1-20000-12-1-1-212-1-1-11111-21    orthogonal lifted from D6
ρ1422-2-20-1-1-1220000-1-12-111111-21-2-12-1-1    orthogonal lifted from D6
ρ15222-202-1-1-1-20000-12-1-12-1-2111-1-111-21    orthogonal lifted from D6
ρ1622-220-1-12-1-200002-1-1-111-1-12-1-21-2111    orthogonal lifted from D6
ρ1722220-1-12-1200002-1-1-1-1-1-1-12-12-12-1-1-1    orthogonal lifted from S3
ρ1822-2-202-1-1-120000-12-1-1-21-211111-1-12-1    orthogonal lifted from D6
ρ1922-220-1-1-12-20000-1-12-111-1-1-121-21-211    orthogonal lifted from D6
ρ20222202-1-1-120000-12-1-12-12-1-1-1-1-1-1-12-1    orthogonal lifted from S3
ρ21222-20-1-1-12-20000-1-12-1-1-1111-2-121-211    orthogonal lifted from D6
ρ2222220-12-1-120000-1-1-12-12-12-1-1-1-1-1-1-12    orthogonal lifted from S3
ρ23222-20-1-12-1-200002-1-1-1-1-111-212-1-2111    orthogonal lifted from D6
ρ2422-2-20-12-1-120000-1-1-121-21-21111-1-1-12    orthogonal lifted from D6
ρ252-200022220-2i2i00-2-2-2-2000000000000    complex lifted from C4○D4
ρ262-2000222202i-2i00-2-2-2-2000000000000    complex lifted from C4○D4
ρ274-4000-2-24-200000-4222000000000000    symplectic lifted from D42S3, Schur index 2
ρ284-40004-2-2-2000002-422000000000000    symplectic lifted from D42S3, Schur index 2
ρ294-4000-24-2-200000222-4000000000000    symplectic lifted from D42S3, Schur index 2
ρ304-4000-2-2-240000022-42000000000000    symplectic lifted from D42S3, Schur index 2

Smallest permutation representation of C12.D6
On 72 points
Generators in S72
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)
(1 26 52 48 17 64)(2 33 53 43 18 71)(3 28 54 38 19 66)(4 35 55 45 20 61)(5 30 56 40 21 68)(6 25 57 47 22 63)(7 32 58 42 23 70)(8 27 59 37 24 65)(9 34 60 44 13 72)(10 29 49 39 14 67)(11 36 50 46 15 62)(12 31 51 41 16 69)
(1 64 7 70)(2 63 8 69)(3 62 9 68)(4 61 10 67)(5 72 11 66)(6 71 12 65)(13 30 19 36)(14 29 20 35)(15 28 21 34)(16 27 22 33)(17 26 23 32)(18 25 24 31)(37 57 43 51)(38 56 44 50)(39 55 45 49)(40 54 46 60)(41 53 47 59)(42 52 48 58)

G:=sub<Sym(72)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,26,52,48,17,64)(2,33,53,43,18,71)(3,28,54,38,19,66)(4,35,55,45,20,61)(5,30,56,40,21,68)(6,25,57,47,22,63)(7,32,58,42,23,70)(8,27,59,37,24,65)(9,34,60,44,13,72)(10,29,49,39,14,67)(11,36,50,46,15,62)(12,31,51,41,16,69), (1,64,7,70)(2,63,8,69)(3,62,9,68)(4,61,10,67)(5,72,11,66)(6,71,12,65)(13,30,19,36)(14,29,20,35)(15,28,21,34)(16,27,22,33)(17,26,23,32)(18,25,24,31)(37,57,43,51)(38,56,44,50)(39,55,45,49)(40,54,46,60)(41,53,47,59)(42,52,48,58)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72), (1,26,52,48,17,64)(2,33,53,43,18,71)(3,28,54,38,19,66)(4,35,55,45,20,61)(5,30,56,40,21,68)(6,25,57,47,22,63)(7,32,58,42,23,70)(8,27,59,37,24,65)(9,34,60,44,13,72)(10,29,49,39,14,67)(11,36,50,46,15,62)(12,31,51,41,16,69), (1,64,7,70)(2,63,8,69)(3,62,9,68)(4,61,10,67)(5,72,11,66)(6,71,12,65)(13,30,19,36)(14,29,20,35)(15,28,21,34)(16,27,22,33)(17,26,23,32)(18,25,24,31)(37,57,43,51)(38,56,44,50)(39,55,45,49)(40,54,46,60)(41,53,47,59)(42,52,48,58) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72)], [(1,26,52,48,17,64),(2,33,53,43,18,71),(3,28,54,38,19,66),(4,35,55,45,20,61),(5,30,56,40,21,68),(6,25,57,47,22,63),(7,32,58,42,23,70),(8,27,59,37,24,65),(9,34,60,44,13,72),(10,29,49,39,14,67),(11,36,50,46,15,62),(12,31,51,41,16,69)], [(1,64,7,70),(2,63,8,69),(3,62,9,68),(4,61,10,67),(5,72,11,66),(6,71,12,65),(13,30,19,36),(14,29,20,35),(15,28,21,34),(16,27,22,33),(17,26,23,32),(18,25,24,31),(37,57,43,51),(38,56,44,50),(39,55,45,49),(40,54,46,60),(41,53,47,59),(42,52,48,58)]])

C12.D6 is a maximal subgroup of
C326C4≀C2  D12.D6  Dic6.D6  D12.8D6  C248D6  C24.26D6  C24.32D6  C24.40D6  C62.(C2×C4)  Dic6.24D6  S3×D42S3  D1212D6  C3282+ 1+4  C4○D4×C3⋊S3  C3292- 1+4  C62.13D6  C36.27D6  (C3×D12)⋊S3  D12⋊(C3⋊S3)  C62.90D6  C62.91D6  C62.100D6
C12.D6 is a maximal quotient of
C62.221C23  C626Q8  C62.223C23  C62.225C23  C62.227C23  C62.229C23  C62.69D4  C62.231C23  C62.233C23  C62.234C23  C62.236C23  C12.31D12  C62.242C23  D4×C3⋊Dic3  C62.72D4  C62.254C23  C62.256C23  C6214D4  C36.27D6  C62.16D6  (C3×D12)⋊S3  D12⋊(C3⋊S3)  C62.90D6  C62.91D6  C62.100D6

Matrix representation of C12.D6 in GL6(𝔽13)

100000
010000
0001200
001100
000050
000008
,
12120000
100000
001100
0012000
000001
000010
,
12120000
010000
000100
001000
0000012
000010

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,1,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0] >;

C12.D6 in GAP, Magma, Sage, TeX

C_{12}.D_6
% in TeX

G:=Group("C12.D6");
// GroupNames label

G:=SmallGroup(144,173);
// by ID

G=gap.SmallGroup(144,173);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,55,218,116,964,3461]);
// Polycyclic

G:=Group<a,b,c|a^12=b^6=1,c^2=a^6,b*a*b^-1=a^7,c*a*c^-1=a^-1,c*b*c^-1=a^6*b^-1>;
// generators/relations

Export

Character table of C12.D6 in TeX

׿
×
𝔽