# Extensions 1→N→G→Q→1 with N=C22×C3⋊S3 and Q=C2

Direct product G=N×Q with N=C22×C3⋊S3 and Q=C2
dρLabelID
C23×C3⋊S372C2^3xC3:S3144,196

Semidirect products G=N:Q with N=C22×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×C3⋊S3)⋊1C2 = C2×C3⋊D12φ: C2/C1C2 ⊆ Out C22×C3⋊S324(C2^2xC3:S3):1C2144,151
(C22×C3⋊S3)⋊2C2 = Dic3⋊D6φ: C2/C1C2 ⊆ Out C22×C3⋊S3124+(C2^2xC3:S3):2C2144,154
(C22×C3⋊S3)⋊3C2 = C2×C12⋊S3φ: C2/C1C2 ⊆ Out C22×C3⋊S372(C2^2xC3:S3):3C2144,170
(C22×C3⋊S3)⋊4C2 = D4×C3⋊S3φ: C2/C1C2 ⊆ Out C22×C3⋊S336(C2^2xC3:S3):4C2144,172
(C22×C3⋊S3)⋊5C2 = C2×C327D4φ: C2/C1C2 ⊆ Out C22×C3⋊S372(C2^2xC3:S3):5C2144,177
(C22×C3⋊S3)⋊6C2 = C22×S32φ: C2/C1C2 ⊆ Out C22×C3⋊S324(C2^2xC3:S3):6C2144,192

Non-split extensions G=N.Q with N=C22×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×C3⋊S3).1C2 = C6.D12φ: C2/C1C2 ⊆ Out C22×C3⋊S324(C2^2xC3:S3).1C2144,65
(C22×C3⋊S3).2C2 = C6.11D12φ: C2/C1C2 ⊆ Out C22×C3⋊S372(C2^2xC3:S3).2C2144,95
(C22×C3⋊S3).3C2 = C62⋊C4φ: C2/C1C2 ⊆ Out C22×C3⋊S3124+(C2^2xC3:S3).3C2144,136
(C22×C3⋊S3).4C2 = C2×C6.D6φ: C2/C1C2 ⊆ Out C22×C3⋊S324(C2^2xC3:S3).4C2144,149
(C22×C3⋊S3).5C2 = C22×C32⋊C4φ: C2/C1C2 ⊆ Out C22×C3⋊S324(C2^2xC3:S3).5C2144,191
(C22×C3⋊S3).6C2 = C2×C4×C3⋊S3φ: trivial image72(C2^2xC3:S3).6C2144,169

׿
×
𝔽