Extensions 1→N→G→Q→1 with N=C5xQ16 and Q=C2

Direct product G=NxQ with N=C5xQ16 and Q=C2
dρLabelID
C10xQ16160C10xQ16160,195

Semidirect products G=N:Q with N=C5xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xQ16):1C2 = C5:SD32φ: C2/C1C2 ⊆ Out C5xQ16804+(C5xQ16):1C2160,35
(C5xQ16):2C2 = D5xQ16φ: C2/C1C2 ⊆ Out C5xQ16804-(C5xQ16):2C2160,138
(C5xQ16):3C2 = Q8.D10φ: C2/C1C2 ⊆ Out C5xQ16804+(C5xQ16):3C2160,140
(C5xQ16):4C2 = Q16:D5φ: C2/C1C2 ⊆ Out C5xQ16804(C5xQ16):4C2160,139
(C5xQ16):5C2 = C5xSD32φ: C2/C1C2 ⊆ Out C5xQ16802(C5xQ16):5C2160,62
(C5xQ16):6C2 = C5xC8.C22φ: C2/C1C2 ⊆ Out C5xQ16804(C5xQ16):6C2160,198
(C5xQ16):7C2 = C5xC4oD8φ: trivial image802(C5xQ16):7C2160,196

Non-split extensions G=N.Q with N=C5xQ16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xQ16).1C2 = C5:Q32φ: C2/C1C2 ⊆ Out C5xQ161604-(C5xQ16).1C2160,36
(C5xQ16).2C2 = C5xQ32φ: C2/C1C2 ⊆ Out C5xQ161602(C5xQ16).2C2160,63

׿
x
:
Z
F
o
wr
Q
<