direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D5×Q16, C8.9D10, Q8.3D10, Dic20⋊5C2, D10.25D4, C20.8C23, C40.7C22, Dic5.9D4, Dic10.4C22, C5⋊2(C2×Q16), (C5×Q16)⋊2C2, C5⋊Q16⋊3C2, (C8×D5).1C2, C2.22(D4×D5), (Q8×D5).1C2, C10.34(C2×D4), C4.8(C22×D5), C5⋊2C8.7C22, (C5×Q8).3C22, (C4×D5).19C22, SmallGroup(160,138)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D5×Q16
G = < a,b,c,d | a5=b2=c8=1, d2=c4, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 184 in 60 conjugacy classes, 29 normal (17 characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, Q8, Q8, D5, C10, C2×C8, Q16, Q16, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×Q16, C5⋊2C8, C40, Dic10, Dic10, C4×D5, C4×D5, C5×Q8, C8×D5, Dic20, C5⋊Q16, C5×Q16, Q8×D5, D5×Q16
Quotients: C1, C2, C22, D4, C23, D5, Q16, C2×D4, D10, C2×Q16, C22×D5, D4×D5, D5×Q16
Character table of D5×Q16
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 20A | 20B | 20C | 20D | 20E | 20F | 40A | 40B | 40C | 40D | |
size | 1 | 1 | 5 | 5 | 2 | 4 | 4 | 10 | 20 | 20 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | 2 | 4 | 4 | 8 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ17 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | 2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | √2 | -√2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | √2 | -√2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -√2 | √2 | -√2 | √2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 4 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ24 | 4 | 4 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4×D5 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | -2√2 | 2√2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | symplectic faithful, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2√2 | -2√2 | 0 | 0 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | symplectic faithful, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | -2√2 | 2√2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | symplectic faithful, Schur index 2 |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2√2 | -2√2 | 0 | 0 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ83ζ53-ζ83ζ52+ζ8ζ53+ζ8ζ52 | ζ83ζ53+ζ83ζ52-ζ8ζ53-ζ8ζ52 | -ζ87ζ54-ζ87ζ5+ζ85ζ54+ζ85ζ5 | -ζ83ζ54-ζ83ζ5+ζ8ζ54+ζ8ζ5 | symplectic faithful, Schur index 2 |
(1 66 62 39 15)(2 67 63 40 16)(3 68 64 33 9)(4 69 57 34 10)(5 70 58 35 11)(6 71 59 36 12)(7 72 60 37 13)(8 65 61 38 14)(17 29 75 50 45)(18 30 76 51 46)(19 31 77 52 47)(20 32 78 53 48)(21 25 79 54 41)(22 26 80 55 42)(23 27 73 56 43)(24 28 74 49 44)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 54)(18 55)(19 56)(20 49)(21 50)(22 51)(23 52)(24 53)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 73)(32 74)(33 72)(34 65)(35 66)(36 67)(37 68)(38 69)(39 70)(40 71)(41 45)(42 46)(43 47)(44 48)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 75 5 79)(2 74 6 78)(3 73 7 77)(4 80 8 76)(9 27 13 31)(10 26 14 30)(11 25 15 29)(12 32 16 28)(17 35 21 39)(18 34 22 38)(19 33 23 37)(20 40 24 36)(41 62 45 58)(42 61 46 57)(43 60 47 64)(44 59 48 63)(49 71 53 67)(50 70 54 66)(51 69 55 65)(52 68 56 72)
G:=sub<Sym(80)| (1,66,62,39,15)(2,67,63,40,16)(3,68,64,33,9)(4,69,57,34,10)(5,70,58,35,11)(6,71,59,36,12)(7,72,60,37,13)(8,65,61,38,14)(17,29,75,50,45)(18,30,76,51,46)(19,31,77,52,47)(20,32,78,53,48)(21,25,79,54,41)(22,26,80,55,42)(23,27,73,56,43)(24,28,74,49,44), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(33,72)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,75,5,79)(2,74,6,78)(3,73,7,77)(4,80,8,76)(9,27,13,31)(10,26,14,30)(11,25,15,29)(12,32,16,28)(17,35,21,39)(18,34,22,38)(19,33,23,37)(20,40,24,36)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72)>;
G:=Group( (1,66,62,39,15)(2,67,63,40,16)(3,68,64,33,9)(4,69,57,34,10)(5,70,58,35,11)(6,71,59,36,12)(7,72,60,37,13)(8,65,61,38,14)(17,29,75,50,45)(18,30,76,51,46)(19,31,77,52,47)(20,32,78,53,48)(21,25,79,54,41)(22,26,80,55,42)(23,27,73,56,43)(24,28,74,49,44), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,54)(18,55)(19,56)(20,49)(21,50)(22,51)(23,52)(24,53)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,73)(32,74)(33,72)(34,65)(35,66)(36,67)(37,68)(38,69)(39,70)(40,71)(41,45)(42,46)(43,47)(44,48)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,75,5,79)(2,74,6,78)(3,73,7,77)(4,80,8,76)(9,27,13,31)(10,26,14,30)(11,25,15,29)(12,32,16,28)(17,35,21,39)(18,34,22,38)(19,33,23,37)(20,40,24,36)(41,62,45,58)(42,61,46,57)(43,60,47,64)(44,59,48,63)(49,71,53,67)(50,70,54,66)(51,69,55,65)(52,68,56,72) );
G=PermutationGroup([[(1,66,62,39,15),(2,67,63,40,16),(3,68,64,33,9),(4,69,57,34,10),(5,70,58,35,11),(6,71,59,36,12),(7,72,60,37,13),(8,65,61,38,14),(17,29,75,50,45),(18,30,76,51,46),(19,31,77,52,47),(20,32,78,53,48),(21,25,79,54,41),(22,26,80,55,42),(23,27,73,56,43),(24,28,74,49,44)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,54),(18,55),(19,56),(20,49),(21,50),(22,51),(23,52),(24,53),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,73),(32,74),(33,72),(34,65),(35,66),(36,67),(37,68),(38,69),(39,70),(40,71),(41,45),(42,46),(43,47),(44,48),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,75,5,79),(2,74,6,78),(3,73,7,77),(4,80,8,76),(9,27,13,31),(10,26,14,30),(11,25,15,29),(12,32,16,28),(17,35,21,39),(18,34,22,38),(19,33,23,37),(20,40,24,36),(41,62,45,58),(42,61,46,57),(43,60,47,64),(44,59,48,63),(49,71,53,67),(50,70,54,66),(51,69,55,65),(52,68,56,72)]])
D5×Q16 is a maximal subgroup of
D5.Q32 Dic20.C4 SD32⋊D5 Q32⋊D5 Dic20⋊C4 D20.30D4 D20.47D4 D20.44D4 Dic10.D6 D15⋊Q16
D5×Q16 is a maximal quotient of
Dic5⋊4Q16 Dic5.3Q16 Dic5⋊Q16 Dic5.9Q16 D10⋊4Q16 D10.7Q16 D10⋊Q16 Dic5⋊5Q16 C40⋊2Q8 Dic10⋊2Q8 D10.8Q16 D10⋊2Q16 C40.26D4 Dic5⋊3Q16 D10⋊5Q16 D10⋊3Q16 Dic10.D6 D15⋊Q16
Matrix representation of D5×Q16 ►in GL4(𝔽41) generated by
34 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 34 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 0 | 14 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 40 | 0 |
G:=sub<GL(4,GF(41))| [34,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,34,40,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,3,0,0,0,0,14],[1,0,0,0,0,1,0,0,0,0,0,40,0,0,1,0] >;
D5×Q16 in GAP, Magma, Sage, TeX
D_5\times Q_{16}
% in TeX
G:=Group("D5xQ16");
// GroupNames label
G:=SmallGroup(160,138);
// by ID
G=gap.SmallGroup(160,138);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,116,86,297,159,69,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^8=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export