Extensions 1→N→G→Q→1 with N=C3 and Q=C32⋊C6

Direct product G=N×Q with N=C3 and Q=C32⋊C6

Semidirect products G=N:Q with N=C3 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C3⋊(C32⋊C6) = He34S3φ: C32⋊C6/He3C2 ⊆ Aut C327C3:(C3^2:C6)162,40

Non-split extensions G=N.Q with N=C3 and Q=C32⋊C6
extensionφ:Q→Aut NdρLabelID
C3.1(C32⋊C6) = C32⋊D9φ: C32⋊C6/He3C2 ⊆ Aut C327C3.1(C3^2:C6)162,5
C3.2(C32⋊C6) = C33⋊C6φ: C32⋊C6/He3C2 ⊆ Aut C396+C3.2(C3^2:C6)162,11
C3.3(C32⋊C6) = He3.S3φ: C32⋊C6/He3C2 ⊆ Aut C3276+C3.3(C3^2:C6)162,13
C3.4(C32⋊C6) = He3.2S3φ: C32⋊C6/He3C2 ⊆ Aut C3276+C3.4(C3^2:C6)162,15
C3.5(C32⋊C6) = C32⋊C18central extension (φ=1)186C3.5(C3^2:C6)162,4
C3.6(C32⋊C6) = C3≀S3central stem extension (φ=1)93C3.6(C3^2:C6)162,10
C3.7(C32⋊C6) = He3.C6central stem extension (φ=1)273C3.7(C3^2:C6)162,12
C3.8(C32⋊C6) = He3.2C6central stem extension (φ=1)273C3.8(C3^2:C6)162,14