Extensions 1→N→G→Q→1 with N=C2×C14 and Q=S3

Direct product G=N×Q with N=C2×C14 and Q=S3
dρLabelID
S3×C2×C1484S3xC2xC14168,55

Semidirect products G=N:Q with N=C2×C14 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C14)⋊1S3 = C7×S4φ: S3/C1S3 ⊆ Aut C2×C14283(C2xC14):1S3168,45
(C2×C14)⋊2S3 = C7⋊S4φ: S3/C1S3 ⊆ Aut C2×C14286+(C2xC14):2S3168,46
(C2×C14)⋊3S3 = C7×C3⋊D4φ: S3/C3C2 ⊆ Aut C2×C14842(C2xC14):3S3168,33
(C2×C14)⋊4S3 = C217D4φ: S3/C3C2 ⊆ Aut C2×C14842(C2xC14):4S3168,38
(C2×C14)⋊5S3 = C22×D21φ: S3/C3C2 ⊆ Aut C2×C1484(C2xC14):5S3168,56

Non-split extensions G=N.Q with N=C2×C14 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2×C14).S3 = C2×Dic21φ: S3/C3C2 ⊆ Aut C2×C14168(C2xC14).S3168,37
(C2×C14).2S3 = Dic3×C14central extension (φ=1)168(C2xC14).2S3168,32

׿
×
𝔽