Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C14

Direct product G=N×Q with N=C6 and Q=C2×C14

Semidirect products G=N:Q with N=C6 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×C14) = S3×C2×C14φ: C2×C14/C14C2 ⊆ Aut C684C6:(C2xC14)168,55

Non-split extensions G=N.Q with N=C6 and Q=C2×C14
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C14) = C7×Dic6φ: C2×C14/C14C2 ⊆ Aut C61682C6.1(C2xC14)168,29
C6.2(C2×C14) = S3×C28φ: C2×C14/C14C2 ⊆ Aut C6842C6.2(C2xC14)168,30
C6.3(C2×C14) = C7×D12φ: C2×C14/C14C2 ⊆ Aut C6842C6.3(C2xC14)168,31
C6.4(C2×C14) = Dic3×C14φ: C2×C14/C14C2 ⊆ Aut C6168C6.4(C2xC14)168,32
C6.5(C2×C14) = C7×C3⋊D4φ: C2×C14/C14C2 ⊆ Aut C6842C6.5(C2xC14)168,33
C6.6(C2×C14) = D4×C21central extension (φ=1)842C6.6(C2xC14)168,40
C6.7(C2×C14) = Q8×C21central extension (φ=1)1682C6.7(C2xC14)168,41