Extensions 1→N→G→Q→1 with N=2+ (1+4) and Q=S3

Direct product G=N×Q with N=2+ (1+4) and Q=S3
dρLabelID
S3×2+ (1+4)248+S3xES+(2,2)192,1524

Semidirect products G=N:Q with N=2+ (1+4) and Q=S3
extensionφ:Q→Out NdρLabelID
2+ (1+4)1S3 = Q8.5S4φ: S3/C1S3 ⊆ Out 2+ (1+4)244+ES+(2,2):1S3192,988
2+ (1+4)2S3 = Q8.6S4φ: S3/C1S3 ⊆ Out 2+ (1+4)324ES+(2,2):2S3192,1483
2+ (1+4)3S3 = Q8.7S4φ: S3/C1S3 ⊆ Out 2+ (1+4)324+ES+(2,2):3S3192,1484
2+ (1+4)4S3 = C23⋊S4φ: S3/C1S3 ⊆ Out 2+ (1+4)84+ES+(2,2):4S3192,1493
2+ (1+4)5S3 = Q82S4φ: S3/C1S3 ⊆ Out 2+ (1+4)84+ES+(2,2):5S3192,1494
2+ (1+4)6S3 = 2+ (1+4)6S3φ: S3/C3C2 ⊆ Out 2+ (1+4)248+ES+(2,2):6S3192,800
2+ (1+4)7S3 = 2+ (1+4)7S3φ: S3/C3C2 ⊆ Out 2+ (1+4)248+ES+(2,2):7S3192,803
2+ (1+4)8S3 = D12.32C23φ: S3/C3C2 ⊆ Out 2+ (1+4)488+ES+(2,2):8S3192,1394
2+ (1+4)9S3 = D12.33C23φ: S3/C3C2 ⊆ Out 2+ (1+4)488-ES+(2,2):9S3192,1395
2+ (1+4)10S3 = D6.C24φ: trivial image488-ES+(2,2):10S3192,1525

Non-split extensions G=N.Q with N=2+ (1+4) and Q=S3
extensionφ:Q→Out NdρLabelID
2+ (1+4).1S3 = Q8.4S4φ: S3/C1S3 ⊆ Out 2+ (1+4)484ES+(2,2).1S3192,987
2+ (1+4).2S3 = C23.S4φ: S3/C1S3 ⊆ Out 2+ (1+4)164ES+(2,2).2S3192,1491
2+ (1+4).3S3 = Q8.S4φ: S3/C1S3 ⊆ Out 2+ (1+4)164ES+(2,2).3S3192,1492
2+ (1+4).4S3 = 2+ (1+4).4S3φ: S3/C3C2 ⊆ Out 2+ (1+4)488-ES+(2,2).4S3192,801
2+ (1+4).5S3 = 2+ (1+4).5S3φ: S3/C3C2 ⊆ Out 2+ (1+4)488-ES+(2,2).5S3192,802

׿
×
𝔽