Copied to
clipboard

?

G = S3×2+ (1+4)order 192 = 26·3

Direct product of S3 and 2+ (1+4)

direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary

Aliases: S3×2+ (1+4), C6.15C25, D1213C23, C12.50C24, D6.14C24, Dic612C23, Dic3.10C24, C4○D413D6, (C2×D4)⋊31D6, D4○D1211C2, D46D69C2, (C4×S3)⋊3C23, (C2×C12)⋊2C23, C3⋊D46C23, (C2×C6).6C24, (S3×D4)⋊17C22, (C6×D4)⋊25C22, D410(C22×S3), (C3×D4)⋊11C23, C4.47(S3×C23), C2.16(S3×C24), C233(C22×S3), (C22×C6)⋊2C23, (C3×Q8)⋊10C23, Q810(C22×S3), (S3×Q8)⋊20C22, C33(C2×2+ (1+4)), C4○D1212C22, (C2×D12)⋊40C22, (C22×S3)⋊6C23, (C2×Dic3)⋊6C23, C22.3(S3×C23), D42S315C22, (S3×C23)⋊19C22, Q83S315C22, (C3×2+ (1+4))⋊4C2, (C2×S3×D4)⋊29C2, (S3×C4○D4)⋊7C2, (S3×C2×C4)⋊36C22, (C2×C4)⋊2(C22×S3), (C3×C4○D4)⋊10C22, (C2×C3⋊D4)⋊32C22, SmallGroup(192,1524)

Series: Derived Chief Lower central Upper central

C1C6 — S3×2+ (1+4)
C1C3C6D6C22×S3S3×C23C2×S3×D4 — S3×2+ (1+4)
C3C6 — S3×2+ (1+4)

Subgroups: 2152 in 898 conjugacy classes, 445 normal (8 characteristic)
C1, C2, C2 [×20], C3, C4 [×6], C4 [×6], C22 [×9], C22 [×52], S3 [×2], S3 [×9], C6, C6 [×9], C2×C4 [×9], C2×C4 [×33], D4 [×18], D4 [×54], Q8 [×2], Q8 [×6], C23 [×6], C23 [×39], Dic3 [×6], C12 [×6], D6, D6 [×9], D6 [×36], C2×C6 [×9], C2×C6 [×6], C22×C4 [×9], C2×D4 [×9], C2×D4 [×81], C2×Q8 [×2], C4○D4 [×6], C4○D4 [×42], C24 [×6], Dic6 [×6], C4×S3 [×24], D12 [×18], C2×Dic3 [×9], C3⋊D4 [×36], C2×C12 [×9], C3×D4 [×18], C3×Q8 [×2], C22×S3 [×27], C22×S3 [×12], C22×C6 [×6], C22×D4 [×9], C2×C4○D4 [×6], 2+ (1+4), 2+ (1+4) [×15], S3×C2×C4 [×9], C2×D12 [×9], C4○D12 [×18], S3×D4 [×54], D42S3 [×18], S3×Q8 [×2], Q83S3 [×6], C2×C3⋊D4 [×18], C6×D4 [×9], C3×C4○D4 [×6], S3×C23 [×6], C2×2+ (1+4), C2×S3×D4 [×9], D46D6 [×9], S3×C4○D4 [×6], D4○D12 [×6], C3×2+ (1+4), S3×2+ (1+4)

Quotients:
C1, C2 [×31], C22 [×155], S3, C23 [×155], D6 [×15], C24 [×31], C22×S3 [×35], 2+ (1+4) [×2], C25, S3×C23 [×15], C2×2+ (1+4), S3×C24, S3×2+ (1+4)

Generators and relations
 G = < a,b,c,d,e,f | a3=b2=c4=d2=f2=1, e2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=c2e >

Permutation representations
On 24 points - transitive group 24T335
Generators in S24
(1 7 17)(2 8 18)(3 5 19)(4 6 20)(9 22 13)(10 23 14)(11 24 15)(12 21 16)
(1 3)(2 4)(5 17)(6 18)(7 19)(8 20)(9 11)(10 12)(13 24)(14 21)(15 22)(16 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(6 8)(9 11)(13 15)(18 20)(22 24)
(1 12 3 10)(2 9 4 11)(5 23 7 21)(6 24 8 22)(13 20 15 18)(14 17 16 19)
(1 10)(2 11)(3 12)(4 9)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)

G:=sub<Sym(24)| (1,7,17)(2,8,18)(3,5,19)(4,6,20)(9,22,13)(10,23,14)(11,24,15)(12,21,16), (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,12,3,10)(2,9,4,11)(5,23,7,21)(6,24,8,22)(13,20,15,18)(14,17,16,19), (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)>;

G:=Group( (1,7,17)(2,8,18)(3,5,19)(4,6,20)(9,22,13)(10,23,14)(11,24,15)(12,21,16), (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,12,3,10)(2,9,4,11)(5,23,7,21)(6,24,8,22)(13,20,15,18)(14,17,16,19), (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19) );

G=PermutationGroup([(1,7,17),(2,8,18),(3,5,19),(4,6,20),(9,22,13),(10,23,14),(11,24,15),(12,21,16)], [(1,3),(2,4),(5,17),(6,18),(7,19),(8,20),(9,11),(10,12),(13,24),(14,21),(15,22),(16,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(6,8),(9,11),(13,15),(18,20),(22,24)], [(1,12,3,10),(2,9,4,11),(5,23,7,21),(6,24,8,22),(13,20,15,18),(14,17,16,19)], [(1,10),(2,11),(3,12),(4,9),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19)])

G:=TransitiveGroup(24,335);

Matrix representation G ⊆ GL6(ℤ)

-1-10000
100000
001000
000100
000010
000001
,
-100000
110000
001000
000100
000010
000001
,
-100000
0-10000
00-1200
00-1100
000-10-1
001-110
,
-100000
0-10000
001000
001-100
000010
00-100-1
,
100000
010000
001020
00001-1
00-10-10
00-11-10
,
100000
010000
001000
000100
00-10-10
00-100-1

G:=sub<GL(6,Integers())| [-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,-1,0,1,0,0,2,1,-1,-1,0,0,0,0,0,1,0,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,1,0,-1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,0,0,1,0,0,2,1,-1,-1,0,0,0,-1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;

51 conjugacy classes

class 1 2A2B···2J2K2L2M···2U 3 4A···4F4G···4L6A6B···6J12A···12F
order122···2222···234···44···466···612···12
size112···2336···622···26···624···44···4

51 irreducible representations

dim11111122248
type+++++++++++
imageC1C2C2C2C2C2S3D6D62+ (1+4)S3×2+ (1+4)
kernelS3×2+ (1+4)C2×S3×D4D46D6S3×C4○D4D4○D12C3×2+ (1+4)2+ (1+4)C2×D4C4○D4S3C1
# reps19966119621

In GAP, Magma, Sage, TeX

S_3\times 2_+^{(1+4)}
% in TeX

G:=Group("S3xES+(2,2)");
// GroupNames label

G:=SmallGroup(192,1524);
// by ID

G=gap.SmallGroup(192,1524);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,297,851,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=d^2=f^2=1,e^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c^2*e>;
// generators/relations

׿
×
𝔽