direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×2+ (1+4), C6.15C25, D12⋊13C23, C12.50C24, D6.14C24, Dic6⋊12C23, Dic3.10C24, C4○D4⋊13D6, (C2×D4)⋊31D6, D4○D12⋊11C2, D4⋊6D6⋊9C2, (C4×S3)⋊3C23, (C2×C12)⋊2C23, C3⋊D4⋊6C23, (C2×C6).6C24, (S3×D4)⋊17C22, (C6×D4)⋊25C22, D4⋊10(C22×S3), (C3×D4)⋊11C23, C4.47(S3×C23), C2.16(S3×C24), C23⋊3(C22×S3), (C22×C6)⋊2C23, (C3×Q8)⋊10C23, Q8⋊10(C22×S3), (S3×Q8)⋊20C22, C3⋊3(C2×2+ (1+4)), C4○D12⋊12C22, (C2×D12)⋊40C22, (C22×S3)⋊6C23, (C2×Dic3)⋊6C23, C22.3(S3×C23), D4⋊2S3⋊15C22, (S3×C23)⋊19C22, Q8⋊3S3⋊15C22, (C3×2+ (1+4))⋊4C2, (C2×S3×D4)⋊29C2, (S3×C4○D4)⋊7C2, (S3×C2×C4)⋊36C22, (C2×C4)⋊2(C22×S3), (C3×C4○D4)⋊10C22, (C2×C3⋊D4)⋊32C22, SmallGroup(192,1524)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 2152 in 898 conjugacy classes, 445 normal (8 characteristic)
C1, C2, C2 [×20], C3, C4 [×6], C4 [×6], C22 [×9], C22 [×52], S3 [×2], S3 [×9], C6, C6 [×9], C2×C4 [×9], C2×C4 [×33], D4 [×18], D4 [×54], Q8 [×2], Q8 [×6], C23 [×6], C23 [×39], Dic3 [×6], C12 [×6], D6, D6 [×9], D6 [×36], C2×C6 [×9], C2×C6 [×6], C22×C4 [×9], C2×D4 [×9], C2×D4 [×81], C2×Q8 [×2], C4○D4 [×6], C4○D4 [×42], C24 [×6], Dic6 [×6], C4×S3 [×24], D12 [×18], C2×Dic3 [×9], C3⋊D4 [×36], C2×C12 [×9], C3×D4 [×18], C3×Q8 [×2], C22×S3 [×27], C22×S3 [×12], C22×C6 [×6], C22×D4 [×9], C2×C4○D4 [×6], 2+ (1+4), 2+ (1+4) [×15], S3×C2×C4 [×9], C2×D12 [×9], C4○D12 [×18], S3×D4 [×54], D4⋊2S3 [×18], S3×Q8 [×2], Q8⋊3S3 [×6], C2×C3⋊D4 [×18], C6×D4 [×9], C3×C4○D4 [×6], S3×C23 [×6], C2×2+ (1+4), C2×S3×D4 [×9], D4⋊6D6 [×9], S3×C4○D4 [×6], D4○D12 [×6], C3×2+ (1+4), S3×2+ (1+4)
Quotients:
C1, C2 [×31], C22 [×155], S3, C23 [×155], D6 [×15], C24 [×31], C22×S3 [×35], 2+ (1+4) [×2], C25, S3×C23 [×15], C2×2+ (1+4), S3×C24, S3×2+ (1+4)
Generators and relations
G = < a,b,c,d,e,f | a3=b2=c4=d2=f2=1, e2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=c2e >
(1 7 17)(2 8 18)(3 5 19)(4 6 20)(9 22 13)(10 23 14)(11 24 15)(12 21 16)
(1 3)(2 4)(5 17)(6 18)(7 19)(8 20)(9 11)(10 12)(13 24)(14 21)(15 22)(16 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(6 8)(9 11)(13 15)(18 20)(22 24)
(1 12 3 10)(2 9 4 11)(5 23 7 21)(6 24 8 22)(13 20 15 18)(14 17 16 19)
(1 10)(2 11)(3 12)(4 9)(5 21)(6 22)(7 23)(8 24)(13 20)(14 17)(15 18)(16 19)
G:=sub<Sym(24)| (1,7,17)(2,8,18)(3,5,19)(4,6,20)(9,22,13)(10,23,14)(11,24,15)(12,21,16), (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,12,3,10)(2,9,4,11)(5,23,7,21)(6,24,8,22)(13,20,15,18)(14,17,16,19), (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19)>;
G:=Group( (1,7,17)(2,8,18)(3,5,19)(4,6,20)(9,22,13)(10,23,14)(11,24,15)(12,21,16), (1,3)(2,4)(5,17)(6,18)(7,19)(8,20)(9,11)(10,12)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,12,3,10)(2,9,4,11)(5,23,7,21)(6,24,8,22)(13,20,15,18)(14,17,16,19), (1,10)(2,11)(3,12)(4,9)(5,21)(6,22)(7,23)(8,24)(13,20)(14,17)(15,18)(16,19) );
G=PermutationGroup([(1,7,17),(2,8,18),(3,5,19),(4,6,20),(9,22,13),(10,23,14),(11,24,15),(12,21,16)], [(1,3),(2,4),(5,17),(6,18),(7,19),(8,20),(9,11),(10,12),(13,24),(14,21),(15,22),(16,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(6,8),(9,11),(13,15),(18,20),(22,24)], [(1,12,3,10),(2,9,4,11),(5,23,7,21),(6,24,8,22),(13,20,15,18),(14,17,16,19)], [(1,10),(2,11),(3,12),(4,9),(5,21),(6,22),(7,23),(8,24),(13,20),(14,17),(15,18),(16,19)])
G:=TransitiveGroup(24,335);
Matrix representation ►G ⊆ GL6(ℤ)
-1 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 2 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | -1 |
0 | 0 | 1 | -1 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 1 | -1 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | -1 | 1 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,-1,0,1,0,0,2,1,-1,-1,0,0,0,0,0,1,0,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,1,0,-1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,0,0,1,0,0,2,1,-1,-1,0,0,0,-1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;
51 conjugacy classes
class | 1 | 2A | 2B | ··· | 2J | 2K | 2L | 2M | ··· | 2U | 3 | 4A | ··· | 4F | 4G | ··· | 4L | 6A | 6B | ··· | 6J | 12A | ··· | 12F |
order | 1 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 2 | ··· | 2 | 3 | 3 | 6 | ··· | 6 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | 2+ (1+4) | S3×2+ (1+4) |
kernel | S3×2+ (1+4) | C2×S3×D4 | D4⋊6D6 | S3×C4○D4 | D4○D12 | C3×2+ (1+4) | 2+ (1+4) | C2×D4 | C4○D4 | S3 | C1 |
# reps | 1 | 9 | 9 | 6 | 6 | 1 | 1 | 9 | 6 | 2 | 1 |
In GAP, Magma, Sage, TeX
S_3\times 2_+^{(1+4)}
% in TeX
G:=Group("S3xES+(2,2)");
// GroupNames label
G:=SmallGroup(192,1524);
// by ID
G=gap.SmallGroup(192,1524);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,297,851,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=d^2=f^2=1,e^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c^2*e>;
// generators/relations