Extensions 1→N→G→Q→1 with N=2- (1+4) and Q=S3

Direct product G=N×Q with N=2- (1+4) and Q=S3
dρLabelID
S3×2- (1+4)488-S3xES-(2,2)192,1526

Semidirect products G=N:Q with N=2- (1+4) and Q=S3
extensionφ:Q→Out NdρLabelID
2- (1+4)1S3 = D4.3S4φ: S3/C1S3 ⊆ Out 2- (1+4)324ES-(2,2):1S3192,990
2- (1+4)2S3 = D4.4S4φ: S3/C1S3 ⊆ Out 2- (1+4)164ES-(2,2):2S3192,1485
2- (1+4)3S3 = D4.5S4φ: S3/C1S3 ⊆ Out 2- (1+4)324-ES-(2,2):3S3192,1486
2- (1+4)4S3 = 2- (1+4)4S3φ: S3/C3C2 ⊆ Out 2- (1+4)488+ES-(2,2):4S3192,804
2- (1+4)5S3 = D12.34C23φ: S3/C3C2 ⊆ Out 2- (1+4)488+ES-(2,2):5S3192,1396
2- (1+4)6S3 = D12.35C23φ: S3/C3C2 ⊆ Out 2- (1+4)968-ES-(2,2):6S3192,1397
2- (1+4)7S3 = D12.39C23φ: trivial image488+ES-(2,2):7S3192,1527

Non-split extensions G=N.Q with N=2- (1+4) and Q=S3
extensionφ:Q→Out NdρLabelID
2- (1+4).S3 = D4.S4φ: S3/C1S3 ⊆ Out 2- (1+4)324-ES-(2,2).S3192,989
2- (1+4).2S3 = 2- (1+4).2S3φ: S3/C3C2 ⊆ Out 2- (1+4)488-ES-(2,2).2S3192,805

׿
×
𝔽