Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Dic12

Direct product G=N×Q with N=C2 and Q=C2×Dic12
dρLabelID
C22×Dic12192C2^2xDic12192,1301


Non-split extensions G=N.Q with N=C2 and Q=C2×Dic12
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Dic12) = C4×Dic12central extension (φ=1)192C2.1(C2xDic12)192,257
C2.2(C2×Dic12) = C2×C2.Dic12central extension (φ=1)192C2.2(C2xDic12)192,662
C2.3(C2×Dic12) = C2×C241C4central extension (φ=1)192C2.3(C2xDic12)192,664
C2.4(C2×Dic12) = C12.14Q16central stem extension (φ=1)192C2.4(C2xDic12)192,240
C2.5(C2×Dic12) = C248Q8central stem extension (φ=1)192C2.5(C2xDic12)192,241
C2.6(C2×Dic12) = C124Q16central stem extension (φ=1)192C2.6(C2xDic12)192,258
C2.7(C2×Dic12) = C23.40D12central stem extension (φ=1)96C2.7(C2xDic12)192,281
C2.8(C2×Dic12) = Dic6.32D4central stem extension (φ=1)96C2.8(C2xDic12)192,298
C2.9(C2×Dic12) = C4⋊Dic12central stem extension (φ=1)192C2.9(C2xDic12)192,408
C2.10(C2×Dic12) = Dic63Q8central stem extension (φ=1)192C2.10(C2xDic12)192,409
C2.11(C2×Dic12) = C24.82D4central stem extension (φ=1)96C2.11(C2xDic12)192,675

׿
×
𝔽