direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic12, C6⋊1Q16, C8.16D6, C4.8D12, C12.31D4, C12.31C23, C24.18C22, C22.14D12, Dic6.7C22, C3⋊1(C2×Q16), (C2×C8).4S3, (C2×C24).6C2, (C2×C4).82D6, (C2×C6).19D4, C6.12(C2×D4), C2.14(C2×D12), C4.29(C22×S3), (C2×Dic6).4C2, (C2×C12).90C22, SmallGroup(96,112)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Dic12
G = < a,b,c | a2=b24=1, c2=b12, ab=ba, ac=ca, cbc-1=b-1 >
Subgroups: 130 in 60 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, Dic3, C12, C2×C6, C2×C8, Q16, C2×Q8, C24, Dic6, Dic6, C2×Dic3, C2×C12, C2×Q16, Dic12, C2×C24, C2×Dic6, C2×Dic12
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, D12, C22×S3, C2×Q16, Dic12, C2×D12, C2×Dic12
Character table of C2×Dic12
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 24A | 24B | 24C | 24D | 24E | 24F | 24G | 24H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | -2 | -2 | 2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -2 | 2 | 2 | -2 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 2 | -2 | -2 | 2 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -2 | -2 | -2 | -2 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | -2 | -2 | 2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | √3 | -√3 | -√3 | √3 | -√3 | √3 | √3 | -√3 | orthogonal lifted from D12 |
ρ16 | 2 | -2 | -2 | 2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | 1 | -√3 | √3 | √3 | -√3 | √3 | -√3 | -√3 | √3 | orthogonal lifted from D12 |
ρ17 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | -√3 | -√3 | √3 | -√3 | -√3 | √3 | √3 | √3 | orthogonal lifted from D12 |
ρ18 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | √3 | √3 | -√3 | √3 | √3 | -√3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ19 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ20 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√2 | -√2 | √2 | √2 | √3 | -√3 | √3 | -√3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | symplectic lifted from Dic12, Schur index 2 |
ρ24 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √2 | √2 | -√2 | -√2 | √3 | -√3 | √3 | -√3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | symplectic lifted from Dic12, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√2 | √2 | -√2 | √2 | -√3 | √3 | √3 | -√3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ85ζ32+ζ85 | symplectic lifted from Dic12, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √2 | -√2 | √2 | -√2 | -√3 | √3 | √3 | -√3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | symplectic lifted from Dic12, Schur index 2 |
ρ27 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√2 | √2 | -√2 | √2 | √3 | -√3 | -√3 | √3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ32+ζ83+ζ8ζ32 | symplectic lifted from Dic12, Schur index 2 |
ρ28 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√2 | -√2 | √2 | √2 | -√3 | √3 | -√3 | √3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | symplectic lifted from Dic12, Schur index 2 |
ρ29 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √2 | √2 | -√2 | -√2 | -√3 | √3 | -√3 | √3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ3+ζ8ζ3+ζ8 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ32+ζ83+ζ8ζ32 | symplectic lifted from Dic12, Schur index 2 |
ρ30 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √2 | -√2 | √2 | -√2 | √3 | -√3 | -√3 | √3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ87ζ3+ζ87+ζ85ζ3 | ζ83ζ32+ζ83+ζ8ζ32 | ζ87ζ32+ζ85ζ32+ζ85 | ζ87ζ32+ζ85ζ32+ζ85 | ζ83ζ32+ζ83+ζ8ζ32 | ζ83ζ3+ζ8ζ3+ζ8 | ζ83ζ3+ζ8ζ3+ζ8 | symplectic lifted from Dic12, Schur index 2 |
(1 85)(2 86)(3 87)(4 88)(5 89)(6 90)(7 91)(8 92)(9 93)(10 94)(11 95)(12 96)(13 73)(14 74)(15 75)(16 76)(17 77)(18 78)(19 79)(20 80)(21 81)(22 82)(23 83)(24 84)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 49)(47 50)(48 51)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 40 13 28)(2 39 14 27)(3 38 15 26)(4 37 16 25)(5 36 17 48)(6 35 18 47)(7 34 19 46)(8 33 20 45)(9 32 21 44)(10 31 22 43)(11 30 23 42)(12 29 24 41)(49 91 61 79)(50 90 62 78)(51 89 63 77)(52 88 64 76)(53 87 65 75)(54 86 66 74)(55 85 67 73)(56 84 68 96)(57 83 69 95)(58 82 70 94)(59 81 71 93)(60 80 72 92)
G:=sub<Sym(96)| (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,49)(47,50)(48,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,40,13,28)(2,39,14,27)(3,38,15,26)(4,37,16,25)(5,36,17,48)(6,35,18,47)(7,34,19,46)(8,33,20,45)(9,32,21,44)(10,31,22,43)(11,30,23,42)(12,29,24,41)(49,91,61,79)(50,90,62,78)(51,89,63,77)(52,88,64,76)(53,87,65,75)(54,86,66,74)(55,85,67,73)(56,84,68,96)(57,83,69,95)(58,82,70,94)(59,81,71,93)(60,80,72,92)>;
G:=Group( (1,85)(2,86)(3,87)(4,88)(5,89)(6,90)(7,91)(8,92)(9,93)(10,94)(11,95)(12,96)(13,73)(14,74)(15,75)(16,76)(17,77)(18,78)(19,79)(20,80)(21,81)(22,82)(23,83)(24,84)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,49)(47,50)(48,51), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,40,13,28)(2,39,14,27)(3,38,15,26)(4,37,16,25)(5,36,17,48)(6,35,18,47)(7,34,19,46)(8,33,20,45)(9,32,21,44)(10,31,22,43)(11,30,23,42)(12,29,24,41)(49,91,61,79)(50,90,62,78)(51,89,63,77)(52,88,64,76)(53,87,65,75)(54,86,66,74)(55,85,67,73)(56,84,68,96)(57,83,69,95)(58,82,70,94)(59,81,71,93)(60,80,72,92) );
G=PermutationGroup([[(1,85),(2,86),(3,87),(4,88),(5,89),(6,90),(7,91),(8,92),(9,93),(10,94),(11,95),(12,96),(13,73),(14,74),(15,75),(16,76),(17,77),(18,78),(19,79),(20,80),(21,81),(22,82),(23,83),(24,84),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,49),(47,50),(48,51)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,40,13,28),(2,39,14,27),(3,38,15,26),(4,37,16,25),(5,36,17,48),(6,35,18,47),(7,34,19,46),(8,33,20,45),(9,32,21,44),(10,31,22,43),(11,30,23,42),(12,29,24,41),(49,91,61,79),(50,90,62,78),(51,89,63,77),(52,88,64,76),(53,87,65,75),(54,86,66,74),(55,85,67,73),(56,84,68,96),(57,83,69,95),(58,82,70,94),(59,81,71,93),(60,80,72,92)]])
C2×Dic12 is a maximal subgroup of
C6.Q32 C24.8D4 C2.Dic24 C12.4D8 C8.8D12 C12⋊4Q16 C8.D12 Dic12⋊C4 D12.32D4 Dic6.32D4 Dic6.D4 D4.D12 Dic3⋊Q16 D6⋊Q16 C42.36D6 C4⋊Dic12 Dic12⋊9C4 C8.2D12 Dic3⋊5Q16 D6⋊2Q16 C24.18D4 C16.D6 C24.82D4 C24.4D4 Q8.10D12 C24.22D4 C24.31D4 C24.26D4 D8.9D6 D4.13D12 C2×S3×Q16 D8.10D6
C2×Dic12 is a maximal quotient of
C12.14Q16 C24⋊8Q8 C12⋊4Q16 C23.40D12 Dic6.32D4 C4⋊Dic12 Dic6⋊3Q8 C24.82D4
Matrix representation of C2×Dic12 ►in GL4(𝔽73) generated by
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
57 | 16 | 0 | 0 |
57 | 57 | 0 | 0 |
0 | 0 | 7 | 7 |
0 | 0 | 66 | 14 |
45 | 50 | 0 | 0 |
50 | 28 | 0 | 0 |
0 | 0 | 5 | 18 |
0 | 0 | 23 | 68 |
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[57,57,0,0,16,57,0,0,0,0,7,66,0,0,7,14],[45,50,0,0,50,28,0,0,0,0,5,23,0,0,18,68] >;
C2×Dic12 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_{12}
% in TeX
G:=Group("C2xDic12");
// GroupNames label
G:=SmallGroup(96,112);
// by ID
G=gap.SmallGroup(96,112);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,218,122,579,69,2309]);
// Polycyclic
G:=Group<a,b,c|a^2=b^24=1,c^2=b^12,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export