Extensions 1→N→G→Q→1 with N=C2 and Q=S3×M4(2)

Direct product G=N×Q with N=C2 and Q=S3×M4(2)
dρLabelID
C2×S3×M4(2)48C2xS3xM4(2)192,1302


Non-split extensions G=N.Q with N=C2 and Q=S3×M4(2)
extensionφ:Q→Aut NdρLabelID
C2.1(S3×M4(2)) = S3×C8⋊C4central extension (φ=1)96C2.1(S3xM4(2))192,263
C2.2(S3×M4(2)) = Dic35M4(2)central extension (φ=1)96C2.2(S3xM4(2))192,266
C2.3(S3×M4(2)) = Dic3.5M4(2)central extension (φ=1)96C2.3(S3xM4(2))192,277
C2.4(S3×M4(2)) = S3×C22⋊C8central extension (φ=1)48C2.4(S3xM4(2))192,283
C2.5(S3×M4(2)) = S3×C4⋊C8central extension (φ=1)96C2.5(S3xM4(2))192,391
C2.6(S3×M4(2)) = C42.200D6central extension (φ=1)96C2.6(S3xM4(2))192,392
C2.7(S3×M4(2)) = Dic3×M4(2)central extension (φ=1)96C2.7(S3xM4(2))192,676
C2.8(S3×M4(2)) = C24⋊Q8central stem extension (φ=1)192C2.8(S3xM4(2))192,260
C2.9(S3×M4(2)) = C42.182D6central stem extension (φ=1)96C2.9(S3xM4(2))192,264
C2.10(S3×M4(2)) = C89D12central stem extension (φ=1)96C2.10(S3xM4(2))192,265
C2.11(S3×M4(2)) = Dic3.M4(2)central stem extension (φ=1)96C2.11(S3xM4(2))192,278
C2.12(S3×M4(2)) = D6⋊M4(2)central stem extension (φ=1)48C2.12(S3xM4(2))192,285
C2.13(S3×M4(2)) = D62M4(2)central stem extension (φ=1)96C2.13(S3xM4(2))192,287
C2.14(S3×M4(2)) = Dic3⋊M4(2)central stem extension (φ=1)96C2.14(S3xM4(2))192,288
C2.15(S3×M4(2)) = C42.27D6central stem extension (φ=1)192C2.15(S3xM4(2))192,387
C2.16(S3×M4(2)) = C42.202D6central stem extension (φ=1)96C2.16(S3xM4(2))192,394
C2.17(S3×M4(2)) = D63M4(2)central stem extension (φ=1)96C2.17(S3xM4(2))192,395
C2.18(S3×M4(2)) = C12⋊M4(2)central stem extension (φ=1)96C2.18(S3xM4(2))192,396
C2.19(S3×M4(2)) = Dic34M4(2)central stem extension (φ=1)96C2.19(S3xM4(2))192,677
C2.20(S3×M4(2)) = D66M4(2)central stem extension (φ=1)48C2.20(S3xM4(2))192,685
C2.21(S3×M4(2)) = C24⋊D4central stem extension (φ=1)96C2.21(S3xM4(2))192,686
C2.22(S3×M4(2)) = C2421D4central stem extension (φ=1)96C2.22(S3xM4(2))192,687

׿
×
𝔽