Copied to
clipboard

G = C24⋊D4order 192 = 26·3

20th semidirect product of C24 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2420D4, D64M4(2), D6⋊C838C2, C37(C89D4), C6.79(C4×D4), C812(C3⋊D4), D6⋊C4.16C4, C24⋊C428C2, (C2×C8).188D6, Dic3⋊C840C2, C6.32(C8○D4), C12.442(C2×D4), (C2×M4(2))⋊7S3, C23.24(C4×S3), (C6×M4(2))⋊11C2, Dic3⋊C4.16C4, (C22×C4).152D6, C2.21(S3×M4(2)), C6.32(C2×M4(2)), C12.253(C4○D4), C4.137(C4○D12), C12.55D429C2, (C2×C24).277C22, (C2×C12).867C23, C2.17(D12.C4), C6.D4.12C4, (C22×C12).374C22, (C4×Dic3).189C22, (S3×C2×C8)⋊27C2, (C2×C4).50(C4×S3), C2.24(C4×C3⋊D4), (C4×C3⋊D4).16C2, (C2×C3⋊D4).10C4, C4.133(C2×C3⋊D4), C22.146(S3×C2×C4), (C2×C12).187(C2×C4), (C2×C3⋊C8).323C22, (S3×C2×C4).285C22, (C22×C6).67(C2×C4), (C22×S3).44(C2×C4), (C2×C4).809(C22×S3), (C2×C6).137(C22×C4), (C2×Dic3).34(C2×C4), SmallGroup(192,686)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C24⋊D4
C1C3C6C12C2×C12S3×C2×C4C4×C3⋊D4 — C24⋊D4
C3C2×C6 — C24⋊D4
C1C2×C4C2×M4(2)

Generators and relations for C24⋊D4
 G = < a,b,c | a24=b4=c2=1, bab-1=a5, cac=a17, cbc=b-1 >

Subgroups: 280 in 124 conjugacy classes, 53 normal (47 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, D4, C23, C23, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C3⋊C8, C24, C24, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C22×S3, C22×C6, C8⋊C4, C22⋊C8, C4⋊C8, C4×D4, C22×C8, C2×M4(2), S3×C8, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, D6⋊C4, C6.D4, C2×C24, C3×M4(2), S3×C2×C4, C2×C3⋊D4, C22×C12, C89D4, Dic3⋊C8, C24⋊C4, D6⋊C8, C12.55D4, S3×C2×C8, C4×C3⋊D4, C6×M4(2), C24⋊D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, M4(2), C22×C4, C2×D4, C4○D4, C4×S3, C3⋊D4, C22×S3, C4×D4, C2×M4(2), C8○D4, S3×C2×C4, C4○D12, C2×C3⋊D4, C89D4, S3×M4(2), D12.C4, C4×C3⋊D4, C24⋊D4

Smallest permutation representation of C24⋊D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 70 38 92)(2 51 39 73)(3 56 40 78)(4 61 41 83)(5 66 42 88)(6 71 43 93)(7 52 44 74)(8 57 45 79)(9 62 46 84)(10 67 47 89)(11 72 48 94)(12 53 25 75)(13 58 26 80)(14 63 27 85)(15 68 28 90)(16 49 29 95)(17 54 30 76)(18 59 31 81)(19 64 32 86)(20 69 33 91)(21 50 34 96)(22 55 35 77)(23 60 36 82)(24 65 37 87)
(2 18)(3 11)(5 21)(6 14)(8 24)(9 17)(12 20)(15 23)(25 33)(27 43)(28 36)(30 46)(31 39)(34 42)(37 45)(40 48)(49 95)(50 88)(51 81)(52 74)(53 91)(54 84)(55 77)(56 94)(57 87)(58 80)(59 73)(60 90)(61 83)(62 76)(63 93)(64 86)(65 79)(66 96)(67 89)(68 82)(69 75)(70 92)(71 85)(72 78)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,70,38,92)(2,51,39,73)(3,56,40,78)(4,61,41,83)(5,66,42,88)(6,71,43,93)(7,52,44,74)(8,57,45,79)(9,62,46,84)(10,67,47,89)(11,72,48,94)(12,53,25,75)(13,58,26,80)(14,63,27,85)(15,68,28,90)(16,49,29,95)(17,54,30,76)(18,59,31,81)(19,64,32,86)(20,69,33,91)(21,50,34,96)(22,55,35,77)(23,60,36,82)(24,65,37,87), (2,18)(3,11)(5,21)(6,14)(8,24)(9,17)(12,20)(15,23)(25,33)(27,43)(28,36)(30,46)(31,39)(34,42)(37,45)(40,48)(49,95)(50,88)(51,81)(52,74)(53,91)(54,84)(55,77)(56,94)(57,87)(58,80)(59,73)(60,90)(61,83)(62,76)(63,93)(64,86)(65,79)(66,96)(67,89)(68,82)(69,75)(70,92)(71,85)(72,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,70,38,92)(2,51,39,73)(3,56,40,78)(4,61,41,83)(5,66,42,88)(6,71,43,93)(7,52,44,74)(8,57,45,79)(9,62,46,84)(10,67,47,89)(11,72,48,94)(12,53,25,75)(13,58,26,80)(14,63,27,85)(15,68,28,90)(16,49,29,95)(17,54,30,76)(18,59,31,81)(19,64,32,86)(20,69,33,91)(21,50,34,96)(22,55,35,77)(23,60,36,82)(24,65,37,87), (2,18)(3,11)(5,21)(6,14)(8,24)(9,17)(12,20)(15,23)(25,33)(27,43)(28,36)(30,46)(31,39)(34,42)(37,45)(40,48)(49,95)(50,88)(51,81)(52,74)(53,91)(54,84)(55,77)(56,94)(57,87)(58,80)(59,73)(60,90)(61,83)(62,76)(63,93)(64,86)(65,79)(66,96)(67,89)(68,82)(69,75)(70,92)(71,85)(72,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,70,38,92),(2,51,39,73),(3,56,40,78),(4,61,41,83),(5,66,42,88),(6,71,43,93),(7,52,44,74),(8,57,45,79),(9,62,46,84),(10,67,47,89),(11,72,48,94),(12,53,25,75),(13,58,26,80),(14,63,27,85),(15,68,28,90),(16,49,29,95),(17,54,30,76),(18,59,31,81),(19,64,32,86),(20,69,33,91),(21,50,34,96),(22,55,35,77),(23,60,36,82),(24,65,37,87)], [(2,18),(3,11),(5,21),(6,14),(8,24),(9,17),(12,20),(15,23),(25,33),(27,43),(28,36),(30,46),(31,39),(34,42),(37,45),(40,48),(49,95),(50,88),(51,81),(52,74),(53,91),(54,84),(55,77),(56,94),(57,87),(58,80),(59,73),(60,90),(61,83),(62,76),(63,93),(64,86),(65,79),(66,96),(67,89),(68,82),(69,75),(70,92),(71,85),(72,78)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D8E8F8G8H8I8J8K8L12A12B12C12D12E12F24A···24H
order122222234444444446666688888888888812121212121224···24
size111146621111466121222244222244666612122222444···4

48 irreducible representations

dim1111111111112222222222244
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D4D6D6C4○D4M4(2)C3⋊D4C4×S3C4×S3C8○D4C4○D12S3×M4(2)D12.C4
kernelC24⋊D4Dic3⋊C8C24⋊C4D6⋊C8C12.55D4S3×C2×C8C4×C3⋊D4C6×M4(2)Dic3⋊C4D6⋊C4C6.D4C2×C3⋊D4C2×M4(2)C24C2×C8C22×C4C12D6C8C2×C4C23C6C4C2C2
# reps1111111122221221244224422

Matrix representation of C24⋊D4 in GL6(𝔽73)

27270000
4600000
00277100
00134600
00001012
0000063
,
100000
72720000
00722100
000100
00001547
00004858
,
100000
72720000
001000
000100
0000145
0000072

G:=sub<GL(6,GF(73))| [27,46,0,0,0,0,27,0,0,0,0,0,0,0,27,13,0,0,0,0,71,46,0,0,0,0,0,0,10,0,0,0,0,0,12,63],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,21,1,0,0,0,0,0,0,15,48,0,0,0,0,47,58],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,45,72] >;

C24⋊D4 in GAP, Magma, Sage, TeX

C_{24}\rtimes D_4
% in TeX

G:=Group("C24:D4");
// GroupNames label

G:=SmallGroup(192,686);
// by ID

G=gap.SmallGroup(192,686);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,387,58,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=c^2=1,b*a*b^-1=a^5,c*a*c=a^17,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽