Extensions 1→N→G→Q→1 with N=C8 and Q=C3⋊C8

Direct product G=N×Q with N=C8 and Q=C3⋊C8

Semidirect products G=N:Q with N=C8 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C81(C3⋊C8) = C241C8φ: C3⋊C8/C12C2 ⊆ Aut C8192C8:1(C3:C8)192,17
C82(C3⋊C8) = C242C8φ: C3⋊C8/C12C2 ⊆ Aut C8192C8:2(C3:C8)192,16
C83(C3⋊C8) = C24⋊C8φ: C3⋊C8/C12C2 ⊆ Aut C8192C8:3(C3:C8)192,14

Non-split extensions G=N.Q with N=C8 and Q=C3⋊C8
extensionφ:Q→Aut NdρLabelID
C8.1(C3⋊C8) = C24.1C8φ: C3⋊C8/C12C2 ⊆ Aut C8482C8.1(C3:C8)192,22
C8.2(C3⋊C8) = C24.C8φ: C3⋊C8/C12C2 ⊆ Aut C8192C8.2(C3:C8)192,20
C8.3(C3⋊C8) = C3⋊M6(2)φ: C3⋊C8/C12C2 ⊆ Aut C8962C8.3(C3:C8)192,58
C8.4(C3⋊C8) = C3⋊C64central extension (φ=1)1922C8.4(C3:C8)192,1
C8.5(C3⋊C8) = C4×C3⋊C16central extension (φ=1)192C8.5(C3:C8)192,19
C8.6(C3⋊C8) = C2×C3⋊C32central extension (φ=1)192C8.6(C3:C8)192,57