p-group, cyclic, abelian, monomial
Aliases: C8, also denoted Z8, SmallGroup(8,1)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
| C1 — C8 | 
| C1 — C8 | 
| C1 — C8 | 
Generators and relations for C8
 G = < a | a8=1 >
Character table of C8
| class | 1 | 2 | 4A | 4B | 8A | 8B | 8C | 8D | |
| size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
| ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial | 
| ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 | 
| ρ3 | 1 | -1 | i | -i | ζ87 | ζ85 | ζ83 | ζ8 | linear of order 8 faithful | 
| ρ4 | 1 | 1 | -1 | -1 | -i | i | -i | i | linear of order 4 | 
| ρ5 | 1 | -1 | -i | i | ζ85 | ζ87 | ζ8 | ζ83 | linear of order 8 faithful | 
| ρ6 | 1 | -1 | i | -i | ζ83 | ζ8 | ζ87 | ζ85 | linear of order 8 faithful | 
| ρ7 | 1 | 1 | -1 | -1 | i | -i | i | -i | linear of order 4 | 
| ρ8 | 1 | -1 | -i | i | ζ8 | ζ83 | ζ85 | ζ87 | linear of order 8 faithful | 
(1 2 3 4 5 6 7 8)
G:=sub<Sym(8)| (1,2,3,4,5,6,7,8)>;
G:=Group( (1,2,3,4,5,6,7,8) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8)]])
G:=TransitiveGroup(8,1);
C8 is a maximal subgroup of
 C16  D8  SD16  Q16  C32⋊2C8  F9  C17⋊C8  C52⋊C8  C41⋊C8  C72⋊2C8  C72⋊C8
 C2p.C4: M4(2)  C3⋊C8  C5⋊2C8  C5⋊C8  C7⋊C8  C11⋊C8  C13⋊2C8  C13⋊C8 ...
C8 is a maximal quotient of 
 C16  C32⋊2C8  F9  C52⋊C8  C72⋊2C8  C72⋊C8  A5⋊C8
 Cp⋊C8: C3⋊C8  C5⋊2C8  C5⋊C8  C7⋊C8  C11⋊C8  C13⋊2C8  C13⋊C8  C17⋊3C8 ...
| action | f(x) | Disc(f) | 
|---|---|---|
| 8T1 | x8-8x6+20x4-16x2+2 | 231 | 
Matrix representation of C8 ►in GL1(𝔽17) generated by
| 2 | 
G:=sub<GL(1,GF(17))| [2] >;
C8 in GAP, Magma, Sage, TeX
C_8
% in TeX
G:=Group("C8"); // GroupNames label
G:=SmallGroup(8,1);
// by ID
G=gap.SmallGroup(8,1);
# by ID
G:=PCGroup([3,-2,-2,-2,6,16]);
// Polycyclic
G:=Group<a|a^8=1>;
// generators/relations
Export