Extensions 1→N→G→Q→1 with N=C2 and Q=Dic3⋊C8

Direct product G=N×Q with N=C2 and Q=Dic3⋊C8
dρLabelID
C2×Dic3⋊C8192C2xDic3:C8192,658


Non-split extensions G=N.Q with N=C2 and Q=Dic3⋊C8
extensionφ:Q→Aut NdρLabelID
C2.1(Dic3⋊C8) = Dic3⋊C16central extension (φ=1)192C2.1(Dic3:C8)192,60
C2.2(Dic3⋊C8) = (C2×C24)⋊5C4central extension (φ=1)192C2.2(Dic3:C8)192,109
C2.3(Dic3⋊C8) = C12.53D8central stem extension (φ=1)192C2.3(Dic3:C8)192,38
C2.4(Dic3⋊C8) = C12.39SD16central stem extension (φ=1)192C2.4(Dic3:C8)192,39
C2.5(Dic3⋊C8) = C24.97D4central stem extension (φ=1)484C2.5(Dic3:C8)192,70

׿
×
𝔽