Copied to
clipboard

G = Dic3⋊C8order 96 = 25·3

The semidirect product of Dic3 and C8 acting via C8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic3⋊C8, C12.8Q8, C12.51D4, C4.8Dic6, C6.1M4(2), C32(C4⋊C8), C2.4(S3×C8), (C2×C8).1S3, C6.4(C2×C8), C6.4(C4⋊C4), (C2×C24).1C2, (C2×C4).91D6, C22.9(C4×S3), C2.1(C8⋊S3), C4.26(C3⋊D4), (C4×Dic3).5C2, (C2×Dic3).2C4, C2.1(Dic3⋊C4), (C2×C12).105C22, (C2×C3⋊C8).9C2, (C2×C6).10(C2×C4), SmallGroup(96,21)

Series: Derived Chief Lower central Upper central

C1C6 — Dic3⋊C8
C1C3C6C12C2×C12C4×Dic3 — Dic3⋊C8
C3C6 — Dic3⋊C8
C1C2×C4C2×C8

Generators and relations for Dic3⋊C8
 G = < a,b,c | a6=c8=1, b2=a3, bab-1=a-1, ac=ca, cbc-1=a3b >

3C4
3C4
6C4
2C8
3C2×C4
3C2×C4
6C8
2Dic3
3C2×C8
3C42
2C24
2C3⋊C8
3C4⋊C8

Smallest permutation representation of Dic3⋊C8
Regular action on 96 points
Generators in S96
(1 53 62 23 43 77)(2 54 63 24 44 78)(3 55 64 17 45 79)(4 56 57 18 46 80)(5 49 58 19 47 73)(6 50 59 20 48 74)(7 51 60 21 41 75)(8 52 61 22 42 76)(9 31 96 66 86 33)(10 32 89 67 87 34)(11 25 90 68 88 35)(12 26 91 69 81 36)(13 27 92 70 82 37)(14 28 93 71 83 38)(15 29 94 72 84 39)(16 30 95 65 85 40)
(1 11 23 68)(2 69 24 12)(3 13 17 70)(4 71 18 14)(5 15 19 72)(6 65 20 16)(7 9 21 66)(8 67 22 10)(25 62 88 77)(26 78 81 63)(27 64 82 79)(28 80 83 57)(29 58 84 73)(30 74 85 59)(31 60 86 75)(32 76 87 61)(33 41 96 51)(34 52 89 42)(35 43 90 53)(36 54 91 44)(37 45 92 55)(38 56 93 46)(39 47 94 49)(40 50 95 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)

G:=sub<Sym(96)| (1,53,62,23,43,77)(2,54,63,24,44,78)(3,55,64,17,45,79)(4,56,57,18,46,80)(5,49,58,19,47,73)(6,50,59,20,48,74)(7,51,60,21,41,75)(8,52,61,22,42,76)(9,31,96,66,86,33)(10,32,89,67,87,34)(11,25,90,68,88,35)(12,26,91,69,81,36)(13,27,92,70,82,37)(14,28,93,71,83,38)(15,29,94,72,84,39)(16,30,95,65,85,40), (1,11,23,68)(2,69,24,12)(3,13,17,70)(4,71,18,14)(5,15,19,72)(6,65,20,16)(7,9,21,66)(8,67,22,10)(25,62,88,77)(26,78,81,63)(27,64,82,79)(28,80,83,57)(29,58,84,73)(30,74,85,59)(31,60,86,75)(32,76,87,61)(33,41,96,51)(34,52,89,42)(35,43,90,53)(36,54,91,44)(37,45,92,55)(38,56,93,46)(39,47,94,49)(40,50,95,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;

G:=Group( (1,53,62,23,43,77)(2,54,63,24,44,78)(3,55,64,17,45,79)(4,56,57,18,46,80)(5,49,58,19,47,73)(6,50,59,20,48,74)(7,51,60,21,41,75)(8,52,61,22,42,76)(9,31,96,66,86,33)(10,32,89,67,87,34)(11,25,90,68,88,35)(12,26,91,69,81,36)(13,27,92,70,82,37)(14,28,93,71,83,38)(15,29,94,72,84,39)(16,30,95,65,85,40), (1,11,23,68)(2,69,24,12)(3,13,17,70)(4,71,18,14)(5,15,19,72)(6,65,20,16)(7,9,21,66)(8,67,22,10)(25,62,88,77)(26,78,81,63)(27,64,82,79)(28,80,83,57)(29,58,84,73)(30,74,85,59)(31,60,86,75)(32,76,87,61)(33,41,96,51)(34,52,89,42)(35,43,90,53)(36,54,91,44)(37,45,92,55)(38,56,93,46)(39,47,94,49)(40,50,95,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );

G=PermutationGroup([[(1,53,62,23,43,77),(2,54,63,24,44,78),(3,55,64,17,45,79),(4,56,57,18,46,80),(5,49,58,19,47,73),(6,50,59,20,48,74),(7,51,60,21,41,75),(8,52,61,22,42,76),(9,31,96,66,86,33),(10,32,89,67,87,34),(11,25,90,68,88,35),(12,26,91,69,81,36),(13,27,92,70,82,37),(14,28,93,71,83,38),(15,29,94,72,84,39),(16,30,95,65,85,40)], [(1,11,23,68),(2,69,24,12),(3,13,17,70),(4,71,18,14),(5,15,19,72),(6,65,20,16),(7,9,21,66),(8,67,22,10),(25,62,88,77),(26,78,81,63),(27,64,82,79),(28,80,83,57),(29,58,84,73),(30,74,85,59),(31,60,86,75),(32,76,87,61),(33,41,96,51),(34,52,89,42),(35,43,90,53),(36,54,91,44),(37,45,92,55),(38,56,93,46),(39,47,94,49),(40,50,95,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])

Dic3⋊C8 is a maximal subgroup of
C8×Dic6  C2412Q8  C42.282D6  C42.243D6  C24⋊Q8  C42.182D6  C42.185D6  Dic3.5M4(2)  Dic3.M4(2)  C24⋊C4⋊C2  C3⋊D4⋊C8  D62M4(2)  Dic3⋊M4(2)  C3⋊C826D4  Dic3.D8  D4⋊Dic6  Dic62D4  D4.Dic6  D4.2Dic6  Dic6.D4  D123D4  D12.D4  Q82Dic6  Q83Dic6  Dic3⋊Q16  Q8.3Dic6  Dic6.11D4  Q8.4Dic6  Dic3⋊SD16  D12.12D4  C42.27D6  Dic6⋊C8  C42.198D6  S3×C4⋊C8  C12⋊M4(2)  C42.30D6  Dic6⋊Q8  Dic6.Q8  D12⋊Q8  D12.Q8  Dic3.Q16  Dic6.2Q8  D122Q8  D12.2Q8  Dic3⋊C8⋊C2  C8×C3⋊D4  C2433D4  Dic34M4(2)  C12.88(C2×Q8)  C24⋊D4  C2421D4  Dic3⋊D8  (C6×D8).C2  Dic33SD16  Dic35SD16  (C3×D4).D4  (C3×Q8).D4  Dic33Q16  (C2×Q16)⋊S3  Dic9⋊C8  C12.81D12  C12.15Dic6  C12.30Dic6  C60.14Q8  C60.15Q8  C60.26Q8  C30.4M4(2)  Dic15⋊C8
Dic3⋊C8 is a maximal quotient of
C12.53D8  C12.39SD16  Dic3⋊C16  C24.97D4  (C2×C24)⋊5C4  Dic9⋊C8  C12.81D12  C12.15Dic6  C12.30Dic6  C60.14Q8  C60.15Q8  C60.26Q8  C30.4M4(2)  Dic15⋊C8

36 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H6A6B6C8A8B8C8D8E8F8G8H12A12B12C12D24A···24H
order1222344444444666888888881212121224···24
size11112111166662222222666622222···2

36 irreducible representations

dim1111112222222222
type++++++-+-
imageC1C2C2C2C4C8S3D4Q8D6M4(2)Dic6C3⋊D4C4×S3S3×C8C8⋊S3
kernelDic3⋊C8C2×C3⋊C8C4×Dic3C2×C24C2×Dic3Dic3C2×C8C12C12C2×C4C6C4C4C22C2C2
# reps1111481111222244

Matrix representation of Dic3⋊C8 in GL4(𝔽73) generated by

72000
07200
00172
0010
,
233200
615000
00826
003465
,
0100
46000
004360
001330
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,1,1,0,0,72,0],[23,61,0,0,32,50,0,0,0,0,8,34,0,0,26,65],[0,46,0,0,1,0,0,0,0,0,43,13,0,0,60,30] >;

Dic3⋊C8 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes C_8
% in TeX

G:=Group("Dic3:C8");
// GroupNames label

G:=SmallGroup(96,21);
// by ID

G=gap.SmallGroup(96,21);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,121,31,86,2309]);
// Polycyclic

G:=Group<a,b,c|a^6=c^8=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

Export

Subgroup lattice of Dic3⋊C8 in TeX

׿
×
𝔽