metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic3⋊C8, C12.8Q8, C12.51D4, C4.8Dic6, C6.1M4(2), C3⋊2(C4⋊C8), C2.4(S3×C8), (C2×C8).1S3, C6.4(C2×C8), C6.4(C4⋊C4), (C2×C24).1C2, (C2×C4).91D6, C22.9(C4×S3), C2.1(C8⋊S3), C4.26(C3⋊D4), (C4×Dic3).5C2, (C2×Dic3).2C4, C2.1(Dic3⋊C4), (C2×C12).105C22, (C2×C3⋊C8).9C2, (C2×C6).10(C2×C4), SmallGroup(96,21)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic3⋊C8
G = < a,b,c | a6=c8=1, b2=a3, bab-1=a-1, ac=ca, cbc-1=a3b >
(1 53 62 23 43 77)(2 54 63 24 44 78)(3 55 64 17 45 79)(4 56 57 18 46 80)(5 49 58 19 47 73)(6 50 59 20 48 74)(7 51 60 21 41 75)(8 52 61 22 42 76)(9 31 96 66 86 33)(10 32 89 67 87 34)(11 25 90 68 88 35)(12 26 91 69 81 36)(13 27 92 70 82 37)(14 28 93 71 83 38)(15 29 94 72 84 39)(16 30 95 65 85 40)
(1 11 23 68)(2 69 24 12)(3 13 17 70)(4 71 18 14)(5 15 19 72)(6 65 20 16)(7 9 21 66)(8 67 22 10)(25 62 88 77)(26 78 81 63)(27 64 82 79)(28 80 83 57)(29 58 84 73)(30 74 85 59)(31 60 86 75)(32 76 87 61)(33 41 96 51)(34 52 89 42)(35 43 90 53)(36 54 91 44)(37 45 92 55)(38 56 93 46)(39 47 94 49)(40 50 95 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
G:=sub<Sym(96)| (1,53,62,23,43,77)(2,54,63,24,44,78)(3,55,64,17,45,79)(4,56,57,18,46,80)(5,49,58,19,47,73)(6,50,59,20,48,74)(7,51,60,21,41,75)(8,52,61,22,42,76)(9,31,96,66,86,33)(10,32,89,67,87,34)(11,25,90,68,88,35)(12,26,91,69,81,36)(13,27,92,70,82,37)(14,28,93,71,83,38)(15,29,94,72,84,39)(16,30,95,65,85,40), (1,11,23,68)(2,69,24,12)(3,13,17,70)(4,71,18,14)(5,15,19,72)(6,65,20,16)(7,9,21,66)(8,67,22,10)(25,62,88,77)(26,78,81,63)(27,64,82,79)(28,80,83,57)(29,58,84,73)(30,74,85,59)(31,60,86,75)(32,76,87,61)(33,41,96,51)(34,52,89,42)(35,43,90,53)(36,54,91,44)(37,45,92,55)(38,56,93,46)(39,47,94,49)(40,50,95,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)>;
G:=Group( (1,53,62,23,43,77)(2,54,63,24,44,78)(3,55,64,17,45,79)(4,56,57,18,46,80)(5,49,58,19,47,73)(6,50,59,20,48,74)(7,51,60,21,41,75)(8,52,61,22,42,76)(9,31,96,66,86,33)(10,32,89,67,87,34)(11,25,90,68,88,35)(12,26,91,69,81,36)(13,27,92,70,82,37)(14,28,93,71,83,38)(15,29,94,72,84,39)(16,30,95,65,85,40), (1,11,23,68)(2,69,24,12)(3,13,17,70)(4,71,18,14)(5,15,19,72)(6,65,20,16)(7,9,21,66)(8,67,22,10)(25,62,88,77)(26,78,81,63)(27,64,82,79)(28,80,83,57)(29,58,84,73)(30,74,85,59)(31,60,86,75)(32,76,87,61)(33,41,96,51)(34,52,89,42)(35,43,90,53)(36,54,91,44)(37,45,92,55)(38,56,93,46)(39,47,94,49)(40,50,95,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96) );
G=PermutationGroup([[(1,53,62,23,43,77),(2,54,63,24,44,78),(3,55,64,17,45,79),(4,56,57,18,46,80),(5,49,58,19,47,73),(6,50,59,20,48,74),(7,51,60,21,41,75),(8,52,61,22,42,76),(9,31,96,66,86,33),(10,32,89,67,87,34),(11,25,90,68,88,35),(12,26,91,69,81,36),(13,27,92,70,82,37),(14,28,93,71,83,38),(15,29,94,72,84,39),(16,30,95,65,85,40)], [(1,11,23,68),(2,69,24,12),(3,13,17,70),(4,71,18,14),(5,15,19,72),(6,65,20,16),(7,9,21,66),(8,67,22,10),(25,62,88,77),(26,78,81,63),(27,64,82,79),(28,80,83,57),(29,58,84,73),(30,74,85,59),(31,60,86,75),(32,76,87,61),(33,41,96,51),(34,52,89,42),(35,43,90,53),(36,54,91,44),(37,45,92,55),(38,56,93,46),(39,47,94,49),(40,50,95,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)]])
Dic3⋊C8 is a maximal subgroup of
C8×Dic6 C24⋊12Q8 C42.282D6 C42.243D6 C24⋊Q8 C42.182D6 C42.185D6 Dic3.5M4(2) Dic3.M4(2) C24⋊C4⋊C2 C3⋊D4⋊C8 D6⋊2M4(2) Dic3⋊M4(2) C3⋊C8⋊26D4 Dic3.D8 D4⋊Dic6 Dic6⋊2D4 D4.Dic6 D4.2Dic6 Dic6.D4 D12⋊3D4 D12.D4 Q8⋊2Dic6 Q8⋊3Dic6 Dic3⋊Q16 Q8.3Dic6 Dic6.11D4 Q8.4Dic6 Dic3⋊SD16 D12.12D4 C42.27D6 Dic6⋊C8 C42.198D6 S3×C4⋊C8 C12⋊M4(2) C42.30D6 Dic6⋊Q8 Dic6.Q8 D12⋊Q8 D12.Q8 Dic3.Q16 Dic6.2Q8 D12⋊2Q8 D12.2Q8 Dic3⋊C8⋊C2 C8×C3⋊D4 C24⋊33D4 Dic3⋊4M4(2) C12.88(C2×Q8) C24⋊D4 C24⋊21D4 Dic3⋊D8 (C6×D8).C2 Dic3⋊3SD16 Dic3⋊5SD16 (C3×D4).D4 (C3×Q8).D4 Dic3⋊3Q16 (C2×Q16)⋊S3 Dic9⋊C8 C12.81D12 C12.15Dic6 C12.30Dic6 C60.14Q8 C60.15Q8 C60.26Q8 C30.4M4(2) Dic15⋊C8
Dic3⋊C8 is a maximal quotient of
C12.53D8 C12.39SD16 Dic3⋊C16 C24.97D4 (C2×C24)⋊5C4 Dic9⋊C8 C12.81D12 C12.15Dic6 C12.30Dic6 C60.14Q8 C60.15Q8 C60.26Q8 C30.4M4(2) Dic15⋊C8
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | - | + | - | |||||||
image | C1 | C2 | C2 | C2 | C4 | C8 | S3 | D4 | Q8 | D6 | M4(2) | Dic6 | C3⋊D4 | C4×S3 | S3×C8 | C8⋊S3 |
kernel | Dic3⋊C8 | C2×C3⋊C8 | C4×Dic3 | C2×C24 | C2×Dic3 | Dic3 | C2×C8 | C12 | C12 | C2×C4 | C6 | C4 | C4 | C22 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 4 | 8 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
Matrix representation of Dic3⋊C8 ►in GL4(𝔽73) generated by
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 |
0 | 0 | 1 | 0 |
23 | 32 | 0 | 0 |
61 | 50 | 0 | 0 |
0 | 0 | 8 | 26 |
0 | 0 | 34 | 65 |
0 | 1 | 0 | 0 |
46 | 0 | 0 | 0 |
0 | 0 | 43 | 60 |
0 | 0 | 13 | 30 |
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,1,1,0,0,72,0],[23,61,0,0,32,50,0,0,0,0,8,34,0,0,26,65],[0,46,0,0,1,0,0,0,0,0,43,13,0,0,60,30] >;
Dic3⋊C8 in GAP, Magma, Sage, TeX
{\rm Dic}_3\rtimes C_8
% in TeX
G:=Group("Dic3:C8");
// GroupNames label
G:=SmallGroup(96,21);
// by ID
G=gap.SmallGroup(96,21);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,121,31,86,2309]);
// Polycyclic
G:=Group<a,b,c|a^6=c^8=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations
Export