Extensions 1→N→G→Q→1 with N=Q8xC2xC6 and Q=C2

Direct product G=NxQ with N=Q8xC2xC6 and Q=C2
dρLabelID
Q8xC22xC6192Q8xC2^2xC6192,1532

Semidirect products G=N:Q with N=Q8xC2xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC2xC6):1C2 = (C3xQ8):13D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):1C2192,786
(Q8xC2xC6):2C2 = C22xQ8:2S3φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):2C2192,1366
(Q8xC2xC6):3C2 = C2xQ8.11D6φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):3C2192,1367
(Q8xC2xC6):4C2 = C2xD6:3Q8φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):4C2192,1372
(Q8xC2xC6):5C2 = C2xC12.23D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):5C2192,1373
(Q8xC2xC6):6C2 = Q8xC3:D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):6C2192,1374
(Q8xC2xC6):7C2 = C6.442- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):7C2192,1375
(Q8xC2xC6):8C2 = C6.452- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):8C2192,1376
(Q8xC2xC6):9C2 = C22xS3xQ8φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):9C2192,1517
(Q8xC2xC6):10C2 = C22xQ8:3S3φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):10C2192,1518
(Q8xC2xC6):11C2 = C2xQ8.15D6φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):11C2192,1519
(Q8xC2xC6):12C2 = (C22xQ8):9S3φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):12C2192,790
(Q8xC2xC6):13C2 = C3xC23:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):13C2192,826
(Q8xC2xC6):14C2 = C3xQ8:D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):14C2192,881
(Q8xC2xC6):15C2 = C6xC22:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):15C2192,1412
(Q8xC2xC6):16C2 = C6xC4.4D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):16C2192,1415
(Q8xC2xC6):17C2 = C3xC23.38C23φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):17C2192,1425
(Q8xC2xC6):18C2 = C3xQ8:5D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):18C2192,1437
(Q8xC2xC6):19C2 = C3xD4xQ8φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):19C2192,1438
(Q8xC2xC6):20C2 = C2xC6xSD16φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):20C2192,1459
(Q8xC2xC6):21C2 = C6xC8.C22φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):21C2192,1463
(Q8xC2xC6):22C2 = C6x2- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6):22C2192,1535
(Q8xC2xC6):23C2 = C2xC6xC4oD4φ: trivial image96(Q8xC2xC6):23C2192,1533

Non-split extensions G=N.Q with N=Q8xC2xC6 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC2xC6).1C2 = C2xQ8:2Dic3φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).1C2192,783
(Q8xC2xC6).2C2 = (C6xQ8):6C4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).2C2192,784
(Q8xC2xC6).3C2 = C2xC12.10D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).3C2192,785
(Q8xC2xC6).4C2 = (C2xC6):8Q16φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).4C2192,787
(Q8xC2xC6).5C2 = (C6xQ8):7C4φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).5C2192,788
(Q8xC2xC6).6C2 = C22xC3:Q16φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).6C2192,1368
(Q8xC2xC6).7C2 = C2xDic3:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).7C2192,1369
(Q8xC2xC6).8C2 = C2xQ8xDic3φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).8C2192,1370
(Q8xC2xC6).9C2 = C6.422- 1+4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).9C2192,1371
(Q8xC2xC6).10C2 = C22.52(S3xQ8)φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).10C2192,789
(Q8xC2xC6).11C2 = C3xC23.67C23φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).11C2192,824
(Q8xC2xC6).12C2 = C3xC23.78C23φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).12C2192,828
(Q8xC2xC6).13C2 = C6xC4.10D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).13C2192,845
(Q8xC2xC6).14C2 = C6xQ8:C4φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).14C2192,848
(Q8xC2xC6).15C2 = C3xC23.38D4φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).15C2192,852
(Q8xC2xC6).16C2 = C3xC22:Q16φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).16C2192,884
(Q8xC2xC6).17C2 = C3xC23.32C23φ: C2/C1C2 ⊆ Out Q8xC2xC696(Q8xC2xC6).17C2192,1408
(Q8xC2xC6).18C2 = C6xC4:Q8φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).18C2192,1420
(Q8xC2xC6).19C2 = C2xC6xQ16φ: C2/C1C2 ⊆ Out Q8xC2xC6192(Q8xC2xC6).19C2192,1460
(Q8xC2xC6).20C2 = Q8xC2xC12φ: trivial image192(Q8xC2xC6).20C2192,1405

׿
x
:
Z
F
o
wr
Q
<