Copied to
clipboard

G = C2xC6xSD16order 192 = 26·3

Direct product of C2xC6 and SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C2xC6xSD16, C24:14C23, C12.79C24, C8:3(C22xC6), C4.19(C6xD4), (C22xC8):14C6, C4.2(C23xC6), Q8:2(C22xC6), (C22xC24):24C2, (C2xC24):52C22, (C2xC12).433D4, C12.326(C2xD4), (C3xQ8):11C23, (C22xQ8):16C6, (C6xQ8):53C22, D4.1(C22xC6), C22.66(C6xD4), C23.66(C3xD4), (C22xD4).13C6, (C3xD4).34C23, (C22xC6).222D4, C6.200(C22xD4), (C2xC12).972C23, (C6xD4).327C22, (C22xC12).602C22, (Q8xC2xC6):20C2, C2.24(D4xC2xC6), (C2xC8):14(C2xC6), (D4xC2xC6).25C2, (C2xQ8):15(C2xC6), (C2xC4).89(C3xD4), (C2xD4).73(C2xC6), (C2xC6).687(C2xD4), (C2xC4).142(C22xC6), (C22xC4).136(C2xC6), SmallGroup(192,1459)

Series: Derived Chief Lower central Upper central

C1C4 — C2xC6xSD16
C1C2C4C12C3xQ8C3xSD16C6xSD16 — C2xC6xSD16
C1C2C4 — C2xC6xSD16
C1C22xC6C22xC12 — C2xC6xSD16

Generators and relations for C2xC6xSD16
 G = < a,b,c,d | a2=b6=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c3 >

Subgroups: 498 in 298 conjugacy classes, 178 normal (18 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C12, C12, C12, C2xC6, C2xC6, C2xC8, SD16, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C24, C24, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C3xQ8, C22xC6, C22xC6, C22xC8, C2xSD16, C22xD4, C22xQ8, C2xC24, C3xSD16, C22xC12, C22xC12, C6xD4, C6xD4, C6xQ8, C6xQ8, C23xC6, C22xSD16, C22xC24, C6xSD16, D4xC2xC6, Q8xC2xC6, C2xC6xSD16
Quotients: C1, C2, C3, C22, C6, D4, C23, C2xC6, SD16, C2xD4, C24, C3xD4, C22xC6, C2xSD16, C22xD4, C3xSD16, C6xD4, C23xC6, C22xSD16, C6xSD16, D4xC2xC6, C2xC6xSD16

Smallest permutation representation of C2xC6xSD16
On 96 points
Generators in S96
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 57)(9 32)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(16 31)(17 48)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(33 86)(34 87)(35 88)(36 81)(37 82)(38 83)(39 84)(40 85)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 73)(65 93)(66 94)(67 95)(68 96)(69 89)(70 90)(71 91)(72 92)
(1 14 82 41 91 54)(2 15 83 42 92 55)(3 16 84 43 93 56)(4 9 85 44 94 49)(5 10 86 45 95 50)(6 11 87 46 96 51)(7 12 88 47 89 52)(8 13 81 48 90 53)(17 70 78 57 28 36)(18 71 79 58 29 37)(19 72 80 59 30 38)(20 65 73 60 31 39)(21 66 74 61 32 40)(22 67 75 62 25 33)(23 68 76 63 26 34)(24 69 77 64 27 35)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 41)(2 44)(3 47)(4 42)(5 45)(6 48)(7 43)(8 46)(9 92)(10 95)(11 90)(12 93)(13 96)(14 91)(15 94)(16 89)(17 63)(18 58)(19 61)(20 64)(21 59)(22 62)(23 57)(24 60)(25 67)(26 70)(27 65)(28 68)(29 71)(30 66)(31 69)(32 72)(33 75)(34 78)(35 73)(36 76)(37 79)(38 74)(39 77)(40 80)(49 83)(50 86)(51 81)(52 84)(53 87)(54 82)(55 85)(56 88)

G:=sub<Sym(96)| (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(33,86)(34,87)(35,88)(36,81)(37,82)(38,83)(39,84)(40,85)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73)(65,93)(66,94)(67,95)(68,96)(69,89)(70,90)(71,91)(72,92), (1,14,82,41,91,54)(2,15,83,42,92,55)(3,16,84,43,93,56)(4,9,85,44,94,49)(5,10,86,45,95,50)(6,11,87,46,96,51)(7,12,88,47,89,52)(8,13,81,48,90,53)(17,70,78,57,28,36)(18,71,79,58,29,37)(19,72,80,59,30,38)(20,65,73,60,31,39)(21,66,74,61,32,40)(22,67,75,62,25,33)(23,68,76,63,26,34)(24,69,77,64,27,35), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,41)(2,44)(3,47)(4,42)(5,45)(6,48)(7,43)(8,46)(9,92)(10,95)(11,90)(12,93)(13,96)(14,91)(15,94)(16,89)(17,63)(18,58)(19,61)(20,64)(21,59)(22,62)(23,57)(24,60)(25,67)(26,70)(27,65)(28,68)(29,71)(30,66)(31,69)(32,72)(33,75)(34,78)(35,73)(36,76)(37,79)(38,74)(39,77)(40,80)(49,83)(50,86)(51,81)(52,84)(53,87)(54,82)(55,85)(56,88)>;

G:=Group( (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,32)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(16,31)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(33,86)(34,87)(35,88)(36,81)(37,82)(38,83)(39,84)(40,85)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,73)(65,93)(66,94)(67,95)(68,96)(69,89)(70,90)(71,91)(72,92), (1,14,82,41,91,54)(2,15,83,42,92,55)(3,16,84,43,93,56)(4,9,85,44,94,49)(5,10,86,45,95,50)(6,11,87,46,96,51)(7,12,88,47,89,52)(8,13,81,48,90,53)(17,70,78,57,28,36)(18,71,79,58,29,37)(19,72,80,59,30,38)(20,65,73,60,31,39)(21,66,74,61,32,40)(22,67,75,62,25,33)(23,68,76,63,26,34)(24,69,77,64,27,35), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,41)(2,44)(3,47)(4,42)(5,45)(6,48)(7,43)(8,46)(9,92)(10,95)(11,90)(12,93)(13,96)(14,91)(15,94)(16,89)(17,63)(18,58)(19,61)(20,64)(21,59)(22,62)(23,57)(24,60)(25,67)(26,70)(27,65)(28,68)(29,71)(30,66)(31,69)(32,72)(33,75)(34,78)(35,73)(36,76)(37,79)(38,74)(39,77)(40,80)(49,83)(50,86)(51,81)(52,84)(53,87)(54,82)(55,85)(56,88) );

G=PermutationGroup([[(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,57),(9,32),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(16,31),(17,48),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(33,86),(34,87),(35,88),(36,81),(37,82),(38,83),(39,84),(40,85),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,73),(65,93),(66,94),(67,95),(68,96),(69,89),(70,90),(71,91),(72,92)], [(1,14,82,41,91,54),(2,15,83,42,92,55),(3,16,84,43,93,56),(4,9,85,44,94,49),(5,10,86,45,95,50),(6,11,87,46,96,51),(7,12,88,47,89,52),(8,13,81,48,90,53),(17,70,78,57,28,36),(18,71,79,58,29,37),(19,72,80,59,30,38),(20,65,73,60,31,39),(21,66,74,61,32,40),(22,67,75,62,25,33),(23,68,76,63,26,34),(24,69,77,64,27,35)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,41),(2,44),(3,47),(4,42),(5,45),(6,48),(7,43),(8,46),(9,92),(10,95),(11,90),(12,93),(13,96),(14,91),(15,94),(16,89),(17,63),(18,58),(19,61),(20,64),(21,59),(22,62),(23,57),(24,60),(25,67),(26,70),(27,65),(28,68),(29,71),(30,66),(31,69),(32,72),(33,75),(34,78),(35,73),(36,76),(37,79),(38,74),(39,77),(40,80),(49,83),(50,86),(51,81),(52,84),(53,87),(54,82),(55,85),(56,88)]])

84 conjugacy classes

class 1 2A···2G2H2I2J2K3A3B4A4B4C4D4E4F4G4H6A···6N6O···6V8A···8H12A···12H12I···12P24A···24P
order12···2222233444444446···66···68···812···1212···1224···24
size11···1444411222244441···14···42···22···24···42···2

84 irreducible representations

dim1111111111222222
type+++++++
imageC1C2C2C2C2C3C6C6C6C6D4D4SD16C3xD4C3xD4C3xSD16
kernelC2xC6xSD16C22xC24C6xSD16D4xC2xC6Q8xC2xC6C22xSD16C22xC8C2xSD16C22xD4C22xQ8C2xC12C22xC6C2xC6C2xC4C23C22
# reps1112112224223186216

Matrix representation of C2xC6xSD16 in GL4(F73) generated by

72000
07200
00720
00072
,
72000
06400
00720
00072
,
72000
07200
00061
00661
,
1000
07200
00720
00721
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,64,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,72,0,0,0,0,0,6,0,0,61,61],[1,0,0,0,0,72,0,0,0,0,72,72,0,0,0,1] >;

C2xC6xSD16 in GAP, Magma, Sage, TeX

C_2\times C_6\times {\rm SD}_{16}
% in TeX

G:=Group("C2xC6xSD16");
// GroupNames label

G:=SmallGroup(192,1459);
// by ID

G=gap.SmallGroup(192,1459);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^6=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<