Extensions 1→N→G→Q→1 with N=C2 and Q=C3×2+ 1+4

Direct product G=N×Q with N=C2 and Q=C3×2+ 1+4
dρLabelID
C6×2+ 1+448C6xES+(2,2)192,1534


Non-split extensions G=N.Q with N=C2 and Q=C3×2+ 1+4
extensionφ:Q→Aut NdρLabelID
C2.1(C3×2+ 1+4) = C3×C22.11C24central extension (φ=1)48C2.1(C3xES+(2,2))192,1407
C2.2(C3×2+ 1+4) = C3×C23.33C23central extension (φ=1)96C2.2(C3xES+(2,2))192,1409
C2.3(C3×2+ 1+4) = C3×C233D4central stem extension (φ=1)48C2.3(C3xES+(2,2))192,1423
C2.4(C3×2+ 1+4) = C3×C22.29C24central stem extension (φ=1)48C2.4(C3xES+(2,2))192,1424
C2.5(C3×2+ 1+4) = C3×C22.31C24central stem extension (φ=1)96C2.5(C3xES+(2,2))192,1426
C2.6(C3×2+ 1+4) = C3×C22.32C24central stem extension (φ=1)48C2.6(C3xES+(2,2))192,1427
C2.7(C3×2+ 1+4) = C3×C22.33C24central stem extension (φ=1)96C2.7(C3xES+(2,2))192,1428
C2.8(C3×2+ 1+4) = C3×C22.34C24central stem extension (φ=1)96C2.8(C3xES+(2,2))192,1429
C2.9(C3×2+ 1+4) = C3×C22.36C24central stem extension (φ=1)96C2.9(C3xES+(2,2))192,1431
C2.10(C3×2+ 1+4) = C3×C232Q8central stem extension (φ=1)48C2.10(C3xES+(2,2))192,1432
C2.11(C3×2+ 1+4) = C3×C23.41C23central stem extension (φ=1)96C2.11(C3xES+(2,2))192,1433
C2.12(C3×2+ 1+4) = C3×D42central stem extension (φ=1)48C2.12(C3xES+(2,2))192,1434
C2.13(C3×2+ 1+4) = C3×D45D4central stem extension (φ=1)48C2.13(C3xES+(2,2))192,1435
C2.14(C3×2+ 1+4) = C3×Q86D4central stem extension (φ=1)96C2.14(C3xES+(2,2))192,1439
C2.15(C3×2+ 1+4) = C3×C22.45C24central stem extension (φ=1)48C2.15(C3xES+(2,2))192,1440
C2.16(C3×2+ 1+4) = C3×C22.47C24central stem extension (φ=1)96C2.16(C3xES+(2,2))192,1442
C2.17(C3×2+ 1+4) = C3×D43Q8central stem extension (φ=1)96C2.17(C3xES+(2,2))192,1443
C2.18(C3×2+ 1+4) = C3×C22.49C24central stem extension (φ=1)96C2.18(C3xES+(2,2))192,1444
C2.19(C3×2+ 1+4) = C3×Q82central stem extension (φ=1)192C2.19(C3xES+(2,2))192,1447
C2.20(C3×2+ 1+4) = C3×C22.53C24central stem extension (φ=1)96C2.20(C3xES+(2,2))192,1448
C2.21(C3×2+ 1+4) = C3×C22.54C24central stem extension (φ=1)48C2.21(C3xES+(2,2))192,1449
C2.22(C3×2+ 1+4) = C3×C24⋊C22central stem extension (φ=1)48C2.22(C3xES+(2,2))192,1450
C2.23(C3×2+ 1+4) = C3×C22.56C24central stem extension (φ=1)96C2.23(C3xES+(2,2))192,1451
C2.24(C3×2+ 1+4) = C3×C22.57C24central stem extension (φ=1)96C2.24(C3xES+(2,2))192,1452

׿
×
𝔽