Copied to
clipboard

G = C3×D45D4order 192 = 26·3

Direct product of C3 and D45D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×D45D4, C6.1612+ 1+4, D45(C3×D4), (C3×D4)⋊23D4, (C4×D4)⋊15C6, C4.40(C6×D4), C22≀C28C6, (D4×C12)⋊44C2, C4⋊D411C6, C4212(C2×C6), C22⋊Q811C6, C22.5(C6×D4), (C4×C12)⋊43C22, C12.401(C2×D4), C4.4D410C6, (C6×D4)⋊38C22, (C22×D4)⋊12C6, C24.20(C2×C6), (C6×Q8)⋊52C22, (C2×C6).366C24, C22.D48C6, C6.194(C22×D4), (C2×C12).713C23, (C22×C12)⋊51C22, C22.40(C23×C6), C23.16(C22×C6), (C23×C6).19C22, (C22×C6).98C23, C2.13(C3×2+ 1+4), C4⋊C45(C2×C6), (D4×C2×C6)⋊24C2, C2.18(D4×C2×C6), (C6×C4○D4)⋊22C2, (C2×C4○D4)⋊10C6, (C2×D4)⋊13(C2×C6), (C2×Q8)⋊14(C2×C6), C2.20(C6×C4○D4), C223(C3×C4○D4), (C2×C6)⋊14(C4○D4), (C3×C4⋊D4)⋊38C2, (C2×C22⋊C4)⋊14C6, (C6×C22⋊C4)⋊34C2, C22⋊C416(C2×C6), (C3×C4⋊C4)⋊73C22, (C22×C4)⋊12(C2×C6), C6.239(C2×C4○D4), (C2×C6).182(C2×D4), (C3×C22⋊Q8)⋊38C2, (C3×C22≀C2)⋊16C2, (C3×C4.4D4)⋊30C2, (C2×C4).59(C22×C6), (C3×C22⋊C4)⋊70C22, (C3×C22.D4)⋊27C2, SmallGroup(192,1435)

Series: Derived Chief Lower central Upper central

C1C22 — C3×D45D4
C1C2C22C2×C6C2×C12C6×D4C3×C22≀C2 — C3×D45D4
C1C22 — C3×D45D4
C1C2×C6 — C3×D45D4

Generators and relations for C3×D45D4
 G = < a,b,c,d,e | a3=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=ece=b2c, ede=d-1 >

Subgroups: 570 in 334 conjugacy classes, 166 normal (62 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, C4×C12, C3×C22⋊C4, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C22×C12, C22×C12, C6×D4, C6×D4, C6×D4, C6×Q8, C3×C4○D4, C23×C6, D45D4, C6×C22⋊C4, D4×C12, C3×C22≀C2, C3×C4⋊D4, C3×C4⋊D4, C3×C22⋊Q8, C3×C22.D4, C3×C4.4D4, D4×C2×C6, C6×C4○D4, C3×D45D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C4○D4, C24, C3×D4, C22×C6, C22×D4, C2×C4○D4, 2+ 1+4, C6×D4, C3×C4○D4, C23×C6, D45D4, D4×C2×C6, C6×C4○D4, C3×2+ 1+4, C3×D45D4

Smallest permutation representation of C3×D45D4
On 48 points
Generators in S48
(1 5 19)(2 6 20)(3 7 17)(4 8 18)(9 27 21)(10 28 22)(11 25 23)(12 26 24)(13 46 36)(14 47 33)(15 48 34)(16 45 35)(29 40 43)(30 37 44)(31 38 41)(32 39 42)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 4)(2 3)(5 8)(6 7)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 24)(22 23)(25 28)(26 27)(29 32)(30 31)(33 36)(34 35)(37 38)(39 40)(41 44)(42 43)(45 48)(46 47)
(1 34 11 32)(2 35 12 29)(3 36 9 30)(4 33 10 31)(5 15 25 39)(6 16 26 40)(7 13 27 37)(8 14 28 38)(17 46 21 44)(18 47 22 41)(19 48 23 42)(20 45 24 43)
(1 30)(2 31)(3 32)(4 29)(5 37)(6 38)(7 39)(8 40)(9 34)(10 35)(11 36)(12 33)(13 25)(14 26)(15 27)(16 28)(17 42)(18 43)(19 44)(20 41)(21 48)(22 45)(23 46)(24 47)

G:=sub<Sym(48)| (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,43)(30,37,44)(31,38,41)(32,39,42), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,44)(42,43)(45,48)(46,47), (1,34,11,32)(2,35,12,29)(3,36,9,30)(4,33,10,31)(5,15,25,39)(6,16,26,40)(7,13,27,37)(8,14,28,38)(17,46,21,44)(18,47,22,41)(19,48,23,42)(20,45,24,43), (1,30)(2,31)(3,32)(4,29)(5,37)(6,38)(7,39)(8,40)(9,34)(10,35)(11,36)(12,33)(13,25)(14,26)(15,27)(16,28)(17,42)(18,43)(19,44)(20,41)(21,48)(22,45)(23,46)(24,47)>;

G:=Group( (1,5,19)(2,6,20)(3,7,17)(4,8,18)(9,27,21)(10,28,22)(11,25,23)(12,26,24)(13,46,36)(14,47,33)(15,48,34)(16,45,35)(29,40,43)(30,37,44)(31,38,41)(32,39,42), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,4)(2,3)(5,8)(6,7)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,38)(39,40)(41,44)(42,43)(45,48)(46,47), (1,34,11,32)(2,35,12,29)(3,36,9,30)(4,33,10,31)(5,15,25,39)(6,16,26,40)(7,13,27,37)(8,14,28,38)(17,46,21,44)(18,47,22,41)(19,48,23,42)(20,45,24,43), (1,30)(2,31)(3,32)(4,29)(5,37)(6,38)(7,39)(8,40)(9,34)(10,35)(11,36)(12,33)(13,25)(14,26)(15,27)(16,28)(17,42)(18,43)(19,44)(20,41)(21,48)(22,45)(23,46)(24,47) );

G=PermutationGroup([[(1,5,19),(2,6,20),(3,7,17),(4,8,18),(9,27,21),(10,28,22),(11,25,23),(12,26,24),(13,46,36),(14,47,33),(15,48,34),(16,45,35),(29,40,43),(30,37,44),(31,38,41),(32,39,42)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,4),(2,3),(5,8),(6,7),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,24),(22,23),(25,28),(26,27),(29,32),(30,31),(33,36),(34,35),(37,38),(39,40),(41,44),(42,43),(45,48),(46,47)], [(1,34,11,32),(2,35,12,29),(3,36,9,30),(4,33,10,31),(5,15,25,39),(6,16,26,40),(7,13,27,37),(8,14,28,38),(17,46,21,44),(18,47,22,41),(19,48,23,42),(20,45,24,43)], [(1,30),(2,31),(3,32),(4,29),(5,37),(6,38),(7,39),(8,40),(9,34),(10,35),(11,36),(12,33),(13,25),(14,26),(15,27),(16,28),(17,42),(18,43),(19,44),(20,41),(21,48),(22,45),(23,46),(24,47)]])

75 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L3A3B4A···4F4G···4L6A···6F6G···6R6S···6X12A···12L12M···12X
order12222···2222334···44···46···66···66···612···1212···12
size11112···2444112···24···41···12···24···42···24···4

75 irreducible representations

dim11111111111111111111222244
type++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6C6C6D4C4○D4C3×D4C3×C4○D42+ 1+4C3×2+ 1+4
kernelC3×D45D4C6×C22⋊C4D4×C12C3×C22≀C2C3×C4⋊D4C3×C22⋊Q8C3×C22.D4C3×C4.4D4D4×C2×C6C6×C4○D4D45D4C2×C22⋊C4C4×D4C22≀C2C4⋊D4C22⋊Q8C22.D4C4.4D4C22×D4C2×C4○D4C3×D4C2×C6D4C22C6C2
# reps12223121112444624222448812

Matrix representation of C3×D45D4 in GL4(𝔽13) generated by

1000
0100
0090
0009
,
1000
0100
0012
001212
,
12000
01200
0012
00012
,
01200
1000
0083
0055
,
01200
12000
00510
0088
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,0,0,0,0,9],[1,0,0,0,0,1,0,0,0,0,1,12,0,0,2,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,2,12],[0,1,0,0,12,0,0,0,0,0,8,5,0,0,3,5],[0,12,0,0,12,0,0,0,0,0,5,8,0,0,10,8] >;

C3×D45D4 in GAP, Magma, Sage, TeX

C_3\times D_4\rtimes_5D_4
% in TeX

G:=Group("C3xD4:5D4");
// GroupNames label

G:=SmallGroup(192,1435);
// by ID

G=gap.SmallGroup(192,1435);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,336,701,2102,794]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽