Extensions 1→N→G→Q→1 with N=C2×Dic3⋊C4 and Q=C2

Direct product G=N×Q with N=C2×Dic3⋊C4 and Q=C2
dρLabelID
C22×Dic3⋊C4192C2^2xDic3:C4192,1342

Semidirect products G=N:Q with N=C2×Dic3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic3⋊C4)⋊1C2 = D6⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):1C2192,226
(C2×Dic3⋊C4)⋊2C2 = D6⋊C45C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):2C2192,228
(C2×Dic3⋊C4)⋊3C2 = C6.(C4⋊D4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):3C2192,234
(C2×Dic3⋊C4)⋊4C2 = (C22×C4).37D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):4C2192,235
(C2×Dic3⋊C4)⋊5C2 = (C2×C42)⋊3S3φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):5C2192,499
(C2×Dic3⋊C4)⋊6C2 = C24.55D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):6C2192,501
(C2×Dic3⋊C4)⋊7C2 = C24.14D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):7C2192,503
(C2×Dic3⋊C4)⋊8C2 = C24.57D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):8C2192,505
(C2×Dic3⋊C4)⋊9C2 = C24.18D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):9C2192,508
(C2×Dic3⋊C4)⋊10C2 = C24.20D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):10C2192,511
(C2×Dic3⋊C4)⋊11C2 = C24.24D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):11C2192,516
(C2×Dic3⋊C4)⋊12C2 = C24.25D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):12C2192,518
(C2×Dic3⋊C4)⋊13C2 = D6⋊C46C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):13C2192,548
(C2×Dic3⋊C4)⋊14C2 = (C2×C12).290D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):14C2192,552
(C2×Dic3⋊C4)⋊15C2 = C24.73D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):15C2192,769
(C2×Dic3⋊C4)⋊16C2 = C2×C423S3φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):16C2192,1037
(C2×Dic3⋊C4)⋊17C2 = C2×C12.48D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):17C2192,1343
(C2×Dic3⋊C4)⋊18C2 = C2×C23.28D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):18C2192,1348
(C2×Dic3⋊C4)⋊19C2 = C6.C22≀C2φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):19C2192,231
(C2×Dic3⋊C4)⋊20C2 = C24.17D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):20C2192,507
(C2×Dic3⋊C4)⋊21C2 = C2×Dic3.D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):21C2192,1040
(C2×Dic3⋊C4)⋊22C2 = C2×Dic3⋊D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):22C2192,1048
(C2×Dic3⋊C4)⋊23C2 = C2×D6.D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):23C2192,1064
(C2×Dic3⋊C4)⋊24C2 = D45Dic6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):24C2192,1098
(C2×Dic3⋊C4)⋊25C2 = C42.104D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):25C2192,1099
(C2×Dic3⋊C4)⋊26C2 = C6.802- 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):26C2192,1209
(C2×Dic3⋊C4)⋊27C2 = C6.822- 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):27C2192,1214
(C2×Dic3⋊C4)⋊28C2 = C6.322+ 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):28C2192,1156
(C2×Dic3⋊C4)⋊29C2 = C6.702- 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):29C2192,1161
(C2×Dic3⋊C4)⋊30C2 = C6.782- 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):30C2192,1204
(C2×Dic3⋊C4)⋊31C2 = D6⋊C4⋊C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):31C2192,227
(C2×Dic3⋊C4)⋊32C2 = C24.15D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):32C2192,504
(C2×Dic3⋊C4)⋊33C2 = C2×C23.16D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):33C2192,1039
(C2×Dic3⋊C4)⋊34C2 = C2×C23.8D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):34C2192,1041
(C2×Dic3⋊C4)⋊35C2 = C2×Dic34D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):35C2192,1044
(C2×Dic3⋊C4)⋊36C2 = C2×C23.9D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):36C2192,1047
(C2×Dic3⋊C4)⋊37C2 = C2×S3×C4⋊C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):37C2192,1060
(C2×Dic3⋊C4)⋊38C2 = C42.108D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):38C2192,1105
(C2×Dic3⋊C4)⋊39C2 = C42.118D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):39C2192,1123
(C2×Dic3⋊C4)⋊40C2 = C6.342+ 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):40C2192,1160
(C2×Dic3⋊C4)⋊41C2 = C6.522+ 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):41C2192,1195
(C2×Dic3⋊C4)⋊42C2 = (C2×C12).56D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):42C2192,553
(C2×Dic3⋊C4)⋊43C2 = C24.31D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):43C2192,781
(C2×Dic3⋊C4)⋊44C2 = C2×D6⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):44C2192,1067
(C2×Dic3⋊C4)⋊45C2 = C2×C4⋊C4⋊S3φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):45C2192,1071
(C2×Dic3⋊C4)⋊46C2 = C42.96D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):46C2192,1090
(C2×Dic3⋊C4)⋊47C2 = C2×C23.23D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):47C2192,1355
(C2×Dic3⋊C4)⋊48C2 = C2×C23.14D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):48C2192,1361
(C2×Dic3⋊C4)⋊49C2 = C2×D63Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):49C2192,1372
(C2×Dic3⋊C4)⋊50C2 = C6.1042- 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4):50C2192,1383
(C2×Dic3⋊C4)⋊51C2 = C2×C422S3φ: trivial image96(C2xDic3:C4):51C2192,1031
(C2×Dic3⋊C4)⋊52C2 = C2×C4×C3⋊D4φ: trivial image96(C2xDic3:C4):52C2192,1347

Non-split extensions G=N.Q with N=C2×Dic3⋊C4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×Dic3⋊C4).1C2 = (C2×C12)⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).1C2192,205
(C2×Dic3⋊C4).2C2 = C6.(C4×Q8)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).2C2192,206
(C2×Dic3⋊C4).3C2 = C3⋊(C428C4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).3C2192,209
(C2×Dic3⋊C4).4C2 = C6.(C4×D4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).4C2192,211
(C2×Dic3⋊C4).5C2 = C2.(C4×Dic6)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).5C2192,213
(C2×Dic3⋊C4).6C2 = C6.(C4⋊Q8)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).6C2192,216
(C2×Dic3⋊C4).7C2 = (C2×Dic3).9D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).7C2192,217
(C2×Dic3⋊C4).8C2 = (C2×C4).Dic6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).8C2192,219
(C2×Dic3⋊C4).9C2 = C124(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).9C2192,487
(C2×Dic3⋊C4).10C2 = (C2×C42).6S3φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).10C2192,492
(C2×Dic3⋊C4).11C2 = C12⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).11C2192,531
(C2×Dic3⋊C4).12C2 = (C4×Dic3)⋊8C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).12C2192,534
(C2×Dic3⋊C4).13C2 = (C2×Dic3)⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).13C2192,538
(C2×Dic3⋊C4).14C2 = (C2×C12).54D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).14C2192,541
(C2×Dic3⋊C4).15C2 = (C2×Dic3).Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).15C2192,542
(C2×Dic3⋊C4).16C2 = C2×C12.6Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).16C2192,1028
(C2×Dic3⋊C4).17C2 = Dic3⋊C4⋊C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).17C2192,214
(C2×Dic3⋊C4).18C2 = (C2×C4)⋊Dic6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).18C2192,215
(C2×Dic3⋊C4).19C2 = (C2×C4).17D12φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).19C2192,218
(C2×Dic3⋊C4).20C2 = (C22×C4).85D6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).20C2192,220
(C2×Dic3⋊C4).21C2 = C2×C12⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).21C2192,1056
(C2×Dic3⋊C4).22C2 = C2×C4.Dic6φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).22C2192,1058
(C2×Dic3⋊C4).23C2 = C6.752- 1+4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4).23C2192,1182
(C2×Dic3⋊C4).24C2 = (C2×Dic3)⋊C8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C496(C2xDic3:C4).24C2192,28
(C2×Dic3⋊C4).25C2 = Dic3⋊C42φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).25C2192,208
(C2×Dic3⋊C4).26C2 = C2.(C4×D12)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).26C2192,212
(C2×Dic3⋊C4).27C2 = Dic3⋊(C4⋊C4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).27C2192,535
(C2×Dic3⋊C4).28C2 = C2×Dic6⋊C4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).28C2192,1055
(C2×Dic3⋊C4).29C2 = C2×Dic3.Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).29C2192,1057
(C2×Dic3⋊C4).30C2 = C6.67(C4×D4)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).30C2192,537
(C2×Dic3⋊C4).31C2 = (C2×C4).44D12φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).31C2192,540
(C2×Dic3⋊C4).32C2 = (C2×C12).288D4φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).32C2192,544
(C2×Dic3⋊C4).33C2 = C22.52(S3×Q8)φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).33C2192,789
(C2×Dic3⋊C4).34C2 = C2×Dic3⋊Q8φ: C2/C1C2 ⊆ Out C2×Dic3⋊C4192(C2xDic3:C4).34C2192,1369
(C2×Dic3⋊C4).35C2 = C4×Dic3⋊C4φ: trivial image192(C2xDic3:C4).35C2192,490
(C2×Dic3⋊C4).36C2 = C2×C4×Dic6φ: trivial image192(C2xDic3:C4).36C2192,1026

׿
×
𝔽