extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3⋊C4)⋊1C2 = D6⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):1C2 | 192,226 |
(C2×Dic3⋊C4)⋊2C2 = D6⋊C4⋊5C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):2C2 | 192,228 |
(C2×Dic3⋊C4)⋊3C2 = C6.(C4⋊D4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):3C2 | 192,234 |
(C2×Dic3⋊C4)⋊4C2 = (C22×C4).37D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):4C2 | 192,235 |
(C2×Dic3⋊C4)⋊5C2 = (C2×C42)⋊3S3 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):5C2 | 192,499 |
(C2×Dic3⋊C4)⋊6C2 = C24.55D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):6C2 | 192,501 |
(C2×Dic3⋊C4)⋊7C2 = C24.14D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):7C2 | 192,503 |
(C2×Dic3⋊C4)⋊8C2 = C24.57D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):8C2 | 192,505 |
(C2×Dic3⋊C4)⋊9C2 = C24.18D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):9C2 | 192,508 |
(C2×Dic3⋊C4)⋊10C2 = C24.20D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):10C2 | 192,511 |
(C2×Dic3⋊C4)⋊11C2 = C24.24D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):11C2 | 192,516 |
(C2×Dic3⋊C4)⋊12C2 = C24.25D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):12C2 | 192,518 |
(C2×Dic3⋊C4)⋊13C2 = D6⋊C4⋊6C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):13C2 | 192,548 |
(C2×Dic3⋊C4)⋊14C2 = (C2×C12).290D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):14C2 | 192,552 |
(C2×Dic3⋊C4)⋊15C2 = C24.73D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):15C2 | 192,769 |
(C2×Dic3⋊C4)⋊16C2 = C2×C42⋊3S3 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):16C2 | 192,1037 |
(C2×Dic3⋊C4)⋊17C2 = C2×C12.48D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):17C2 | 192,1343 |
(C2×Dic3⋊C4)⋊18C2 = C2×C23.28D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):18C2 | 192,1348 |
(C2×Dic3⋊C4)⋊19C2 = C6.C22≀C2 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):19C2 | 192,231 |
(C2×Dic3⋊C4)⋊20C2 = C24.17D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):20C2 | 192,507 |
(C2×Dic3⋊C4)⋊21C2 = C2×Dic3.D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):21C2 | 192,1040 |
(C2×Dic3⋊C4)⋊22C2 = C2×Dic3⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):22C2 | 192,1048 |
(C2×Dic3⋊C4)⋊23C2 = C2×D6.D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):23C2 | 192,1064 |
(C2×Dic3⋊C4)⋊24C2 = D4⋊5Dic6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):24C2 | 192,1098 |
(C2×Dic3⋊C4)⋊25C2 = C42.104D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):25C2 | 192,1099 |
(C2×Dic3⋊C4)⋊26C2 = C6.802- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):26C2 | 192,1209 |
(C2×Dic3⋊C4)⋊27C2 = C6.822- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):27C2 | 192,1214 |
(C2×Dic3⋊C4)⋊28C2 = C6.322+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):28C2 | 192,1156 |
(C2×Dic3⋊C4)⋊29C2 = C6.702- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):29C2 | 192,1161 |
(C2×Dic3⋊C4)⋊30C2 = C6.782- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):30C2 | 192,1204 |
(C2×Dic3⋊C4)⋊31C2 = D6⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):31C2 | 192,227 |
(C2×Dic3⋊C4)⋊32C2 = C24.15D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):32C2 | 192,504 |
(C2×Dic3⋊C4)⋊33C2 = C2×C23.16D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):33C2 | 192,1039 |
(C2×Dic3⋊C4)⋊34C2 = C2×C23.8D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):34C2 | 192,1041 |
(C2×Dic3⋊C4)⋊35C2 = C2×Dic3⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):35C2 | 192,1044 |
(C2×Dic3⋊C4)⋊36C2 = C2×C23.9D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):36C2 | 192,1047 |
(C2×Dic3⋊C4)⋊37C2 = C2×S3×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):37C2 | 192,1060 |
(C2×Dic3⋊C4)⋊38C2 = C42.108D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):38C2 | 192,1105 |
(C2×Dic3⋊C4)⋊39C2 = C42.118D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):39C2 | 192,1123 |
(C2×Dic3⋊C4)⋊40C2 = C6.342+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):40C2 | 192,1160 |
(C2×Dic3⋊C4)⋊41C2 = C6.522+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):41C2 | 192,1195 |
(C2×Dic3⋊C4)⋊42C2 = (C2×C12).56D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):42C2 | 192,553 |
(C2×Dic3⋊C4)⋊43C2 = C24.31D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):43C2 | 192,781 |
(C2×Dic3⋊C4)⋊44C2 = C2×D6⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):44C2 | 192,1067 |
(C2×Dic3⋊C4)⋊45C2 = C2×C4⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):45C2 | 192,1071 |
(C2×Dic3⋊C4)⋊46C2 = C42.96D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):46C2 | 192,1090 |
(C2×Dic3⋊C4)⋊47C2 = C2×C23.23D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):47C2 | 192,1355 |
(C2×Dic3⋊C4)⋊48C2 = C2×C23.14D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):48C2 | 192,1361 |
(C2×Dic3⋊C4)⋊49C2 = C2×D6⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):49C2 | 192,1372 |
(C2×Dic3⋊C4)⋊50C2 = C6.1042- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4):50C2 | 192,1383 |
(C2×Dic3⋊C4)⋊51C2 = C2×C42⋊2S3 | φ: trivial image | 96 | | (C2xDic3:C4):51C2 | 192,1031 |
(C2×Dic3⋊C4)⋊52C2 = C2×C4×C3⋊D4 | φ: trivial image | 96 | | (C2xDic3:C4):52C2 | 192,1347 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×Dic3⋊C4).1C2 = (C2×C12)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).1C2 | 192,205 |
(C2×Dic3⋊C4).2C2 = C6.(C4×Q8) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).2C2 | 192,206 |
(C2×Dic3⋊C4).3C2 = C3⋊(C42⋊8C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).3C2 | 192,209 |
(C2×Dic3⋊C4).4C2 = C6.(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).4C2 | 192,211 |
(C2×Dic3⋊C4).5C2 = C2.(C4×Dic6) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).5C2 | 192,213 |
(C2×Dic3⋊C4).6C2 = C6.(C4⋊Q8) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).6C2 | 192,216 |
(C2×Dic3⋊C4).7C2 = (C2×Dic3).9D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).7C2 | 192,217 |
(C2×Dic3⋊C4).8C2 = (C2×C4).Dic6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).8C2 | 192,219 |
(C2×Dic3⋊C4).9C2 = C12⋊4(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).9C2 | 192,487 |
(C2×Dic3⋊C4).10C2 = (C2×C42).6S3 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).10C2 | 192,492 |
(C2×Dic3⋊C4).11C2 = C12⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).11C2 | 192,531 |
(C2×Dic3⋊C4).12C2 = (C4×Dic3)⋊8C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).12C2 | 192,534 |
(C2×Dic3⋊C4).13C2 = (C2×Dic3)⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).13C2 | 192,538 |
(C2×Dic3⋊C4).14C2 = (C2×C12).54D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).14C2 | 192,541 |
(C2×Dic3⋊C4).15C2 = (C2×Dic3).Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).15C2 | 192,542 |
(C2×Dic3⋊C4).16C2 = C2×C12.6Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).16C2 | 192,1028 |
(C2×Dic3⋊C4).17C2 = Dic3⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).17C2 | 192,214 |
(C2×Dic3⋊C4).18C2 = (C2×C4)⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).18C2 | 192,215 |
(C2×Dic3⋊C4).19C2 = (C2×C4).17D12 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).19C2 | 192,218 |
(C2×Dic3⋊C4).20C2 = (C22×C4).85D6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).20C2 | 192,220 |
(C2×Dic3⋊C4).21C2 = C2×C12⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).21C2 | 192,1056 |
(C2×Dic3⋊C4).22C2 = C2×C4.Dic6 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).22C2 | 192,1058 |
(C2×Dic3⋊C4).23C2 = C6.752- 1+4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4).23C2 | 192,1182 |
(C2×Dic3⋊C4).24C2 = (C2×Dic3)⋊C8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 96 | | (C2xDic3:C4).24C2 | 192,28 |
(C2×Dic3⋊C4).25C2 = Dic3⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).25C2 | 192,208 |
(C2×Dic3⋊C4).26C2 = C2.(C4×D12) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).26C2 | 192,212 |
(C2×Dic3⋊C4).27C2 = Dic3⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).27C2 | 192,535 |
(C2×Dic3⋊C4).28C2 = C2×Dic6⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).28C2 | 192,1055 |
(C2×Dic3⋊C4).29C2 = C2×Dic3.Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).29C2 | 192,1057 |
(C2×Dic3⋊C4).30C2 = C6.67(C4×D4) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).30C2 | 192,537 |
(C2×Dic3⋊C4).31C2 = (C2×C4).44D12 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).31C2 | 192,540 |
(C2×Dic3⋊C4).32C2 = (C2×C12).288D4 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).32C2 | 192,544 |
(C2×Dic3⋊C4).33C2 = C22.52(S3×Q8) | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).33C2 | 192,789 |
(C2×Dic3⋊C4).34C2 = C2×Dic3⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×Dic3⋊C4 | 192 | | (C2xDic3:C4).34C2 | 192,1369 |
(C2×Dic3⋊C4).35C2 = C4×Dic3⋊C4 | φ: trivial image | 192 | | (C2xDic3:C4).35C2 | 192,490 |
(C2×Dic3⋊C4).36C2 = C2×C4×Dic6 | φ: trivial image | 192 | | (C2xDic3:C4).36C2 | 192,1026 |