Copied to
clipboard

G = C2×C4.Dic6order 192 = 26·3

Direct product of C2 and C4.Dic6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C4.Dic6, C4⋊C4.260D6, C12.66(C2×Q8), (C2×C12).30Q8, C6.8(C22×Q8), (C2×C6).43C24, C63(C42.C2), (C2×C4).37Dic6, C4.31(C2×Dic6), (C22×C4).374D6, (C2×C12).134C23, C22.81(S3×C23), C2.10(C22×Dic6), C22.37(C2×Dic6), C4⋊Dic3.357C22, C23.333(C22×S3), (C22×C12).73C22, (C22×C6).392C23, C22.72(D42S3), Dic3⋊C4.104C22, C22.32(Q83S3), (C4×Dic3).248C22, (C2×Dic3).183C23, (C22×Dic3).208C22, (C6×C4⋊C4).19C2, (C2×C4⋊C4).26S3, C33(C2×C42.C2), C6.70(C2×C4○D4), (C2×C6).51(C2×Q8), C2.5(C2×Q83S3), (C2×C4×Dic3).13C2, C2.14(C2×D42S3), (C2×C4⋊Dic3).43C2, (C2×C6).170(C4○D4), (C3×C4⋊C4).292C22, (C2×Dic3⋊C4).22C2, (C2×C4).139(C22×S3), SmallGroup(192,1058)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C2×C4.Dic6
C1C3C6C2×C6C2×Dic3C22×Dic3C2×C4×Dic3 — C2×C4.Dic6
C3C2×C6 — C2×C4.Dic6
C1C23C2×C4⋊C4

Generators and relations for C2×C4.Dic6
 G = < a,b,c,d | a2=b12=c4=1, d2=c2, ab=ba, ac=ca, ad=da, cbc-1=b7, dbd-1=b5, dcd-1=b6c-1 >

Subgroups: 440 in 226 conjugacy classes, 127 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C2×C4, C2×C4, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×C6, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C42.C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, C22×Dic3, C22×Dic3, C22×C12, C22×C12, C2×C42.C2, C4.Dic6, C2×C4×Dic3, C2×Dic3⋊C4, C2×C4⋊Dic3, C2×C4⋊Dic3, C6×C4⋊C4, C2×C4.Dic6
Quotients: C1, C2, C22, S3, Q8, C23, D6, C2×Q8, C4○D4, C24, Dic6, C22×S3, C42.C2, C22×Q8, C2×C4○D4, C2×Dic6, D42S3, Q83S3, S3×C23, C2×C42.C2, C4.Dic6, C22×Dic6, C2×D42S3, C2×Q83S3, C2×C4.Dic6

Smallest permutation representation of C2×C4.Dic6
Regular action on 192 points
Generators in S192
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 25)(9 26)(10 27)(11 28)(12 29)(13 184)(14 185)(15 186)(16 187)(17 188)(18 189)(19 190)(20 191)(21 192)(22 181)(23 182)(24 183)(37 158)(38 159)(39 160)(40 161)(41 162)(42 163)(43 164)(44 165)(45 166)(46 167)(47 168)(48 157)(49 170)(50 171)(51 172)(52 173)(53 174)(54 175)(55 176)(56 177)(57 178)(58 179)(59 180)(60 169)(61 74)(62 75)(63 76)(64 77)(65 78)(66 79)(67 80)(68 81)(69 82)(70 83)(71 84)(72 73)(85 155)(86 156)(87 145)(88 146)(89 147)(90 148)(91 149)(92 150)(93 151)(94 152)(95 153)(96 154)(97 119)(98 120)(99 109)(100 110)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(121 140)(122 141)(123 142)(124 143)(125 144)(126 133)(127 134)(128 135)(129 136)(130 137)(131 138)(132 139)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)
(1 68 170 118)(2 63 171 113)(3 70 172 120)(4 65 173 115)(5 72 174 110)(6 67 175 117)(7 62 176 112)(8 69 177 119)(9 64 178 114)(10 71 179 109)(11 66 180 116)(12 61 169 111)(13 125 93 161)(14 132 94 168)(15 127 95 163)(16 122 96 158)(17 129 85 165)(18 124 86 160)(19 131 87 167)(20 126 88 162)(21 121 89 157)(22 128 90 164)(23 123 91 159)(24 130 92 166)(25 82 56 97)(26 77 57 104)(27 84 58 99)(28 79 59 106)(29 74 60 101)(30 81 49 108)(31 76 50 103)(32 83 51 98)(33 78 52 105)(34 73 53 100)(35 80 54 107)(36 75 55 102)(37 187 141 154)(38 182 142 149)(39 189 143 156)(40 184 144 151)(41 191 133 146)(42 186 134 153)(43 181 135 148)(44 188 136 155)(45 183 137 150)(46 190 138 145)(47 185 139 152)(48 192 140 147)
(1 166 170 130)(2 159 171 123)(3 164 172 128)(4 157 173 121)(5 162 174 126)(6 167 175 131)(7 160 176 124)(8 165 177 129)(9 158 178 122)(10 163 179 127)(11 168 180 132)(12 161 169 125)(13 67 93 117)(14 72 94 110)(15 65 95 115)(16 70 96 120)(17 63 85 113)(18 68 86 118)(19 61 87 111)(20 66 88 116)(21 71 89 109)(22 64 90 114)(23 69 91 119)(24 62 92 112)(25 44 56 136)(26 37 57 141)(27 42 58 134)(28 47 59 139)(29 40 60 144)(30 45 49 137)(31 38 50 142)(32 43 51 135)(33 48 52 140)(34 41 53 133)(35 46 54 138)(36 39 55 143)(73 152 100 185)(74 145 101 190)(75 150 102 183)(76 155 103 188)(77 148 104 181)(78 153 105 186)(79 146 106 191)(80 151 107 184)(81 156 108 189)(82 149 97 182)(83 154 98 187)(84 147 99 192)

G:=sub<Sym(192)| (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,184)(14,185)(15,186)(16,187)(17,188)(18,189)(19,190)(20,191)(21,192)(22,181)(23,182)(24,183)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,157)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,178)(58,179)(59,180)(60,169)(61,74)(62,75)(63,76)(64,77)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,73)(85,155)(86,156)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,119)(98,120)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(121,140)(122,141)(123,142)(124,143)(125,144)(126,133)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,68,170,118)(2,63,171,113)(3,70,172,120)(4,65,173,115)(5,72,174,110)(6,67,175,117)(7,62,176,112)(8,69,177,119)(9,64,178,114)(10,71,179,109)(11,66,180,116)(12,61,169,111)(13,125,93,161)(14,132,94,168)(15,127,95,163)(16,122,96,158)(17,129,85,165)(18,124,86,160)(19,131,87,167)(20,126,88,162)(21,121,89,157)(22,128,90,164)(23,123,91,159)(24,130,92,166)(25,82,56,97)(26,77,57,104)(27,84,58,99)(28,79,59,106)(29,74,60,101)(30,81,49,108)(31,76,50,103)(32,83,51,98)(33,78,52,105)(34,73,53,100)(35,80,54,107)(36,75,55,102)(37,187,141,154)(38,182,142,149)(39,189,143,156)(40,184,144,151)(41,191,133,146)(42,186,134,153)(43,181,135,148)(44,188,136,155)(45,183,137,150)(46,190,138,145)(47,185,139,152)(48,192,140,147), (1,166,170,130)(2,159,171,123)(3,164,172,128)(4,157,173,121)(5,162,174,126)(6,167,175,131)(7,160,176,124)(8,165,177,129)(9,158,178,122)(10,163,179,127)(11,168,180,132)(12,161,169,125)(13,67,93,117)(14,72,94,110)(15,65,95,115)(16,70,96,120)(17,63,85,113)(18,68,86,118)(19,61,87,111)(20,66,88,116)(21,71,89,109)(22,64,90,114)(23,69,91,119)(24,62,92,112)(25,44,56,136)(26,37,57,141)(27,42,58,134)(28,47,59,139)(29,40,60,144)(30,45,49,137)(31,38,50,142)(32,43,51,135)(33,48,52,140)(34,41,53,133)(35,46,54,138)(36,39,55,143)(73,152,100,185)(74,145,101,190)(75,150,102,183)(76,155,103,188)(77,148,104,181)(78,153,105,186)(79,146,106,191)(80,151,107,184)(81,156,108,189)(82,149,97,182)(83,154,98,187)(84,147,99,192)>;

G:=Group( (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,25)(9,26)(10,27)(11,28)(12,29)(13,184)(14,185)(15,186)(16,187)(17,188)(18,189)(19,190)(20,191)(21,192)(22,181)(23,182)(24,183)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,157)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,178)(58,179)(59,180)(60,169)(61,74)(62,75)(63,76)(64,77)(65,78)(66,79)(67,80)(68,81)(69,82)(70,83)(71,84)(72,73)(85,155)(86,156)(87,145)(88,146)(89,147)(90,148)(91,149)(92,150)(93,151)(94,152)(95,153)(96,154)(97,119)(98,120)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(121,140)(122,141)(123,142)(124,143)(125,144)(126,133)(127,134)(128,135)(129,136)(130,137)(131,138)(132,139), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192), (1,68,170,118)(2,63,171,113)(3,70,172,120)(4,65,173,115)(5,72,174,110)(6,67,175,117)(7,62,176,112)(8,69,177,119)(9,64,178,114)(10,71,179,109)(11,66,180,116)(12,61,169,111)(13,125,93,161)(14,132,94,168)(15,127,95,163)(16,122,96,158)(17,129,85,165)(18,124,86,160)(19,131,87,167)(20,126,88,162)(21,121,89,157)(22,128,90,164)(23,123,91,159)(24,130,92,166)(25,82,56,97)(26,77,57,104)(27,84,58,99)(28,79,59,106)(29,74,60,101)(30,81,49,108)(31,76,50,103)(32,83,51,98)(33,78,52,105)(34,73,53,100)(35,80,54,107)(36,75,55,102)(37,187,141,154)(38,182,142,149)(39,189,143,156)(40,184,144,151)(41,191,133,146)(42,186,134,153)(43,181,135,148)(44,188,136,155)(45,183,137,150)(46,190,138,145)(47,185,139,152)(48,192,140,147), (1,166,170,130)(2,159,171,123)(3,164,172,128)(4,157,173,121)(5,162,174,126)(6,167,175,131)(7,160,176,124)(8,165,177,129)(9,158,178,122)(10,163,179,127)(11,168,180,132)(12,161,169,125)(13,67,93,117)(14,72,94,110)(15,65,95,115)(16,70,96,120)(17,63,85,113)(18,68,86,118)(19,61,87,111)(20,66,88,116)(21,71,89,109)(22,64,90,114)(23,69,91,119)(24,62,92,112)(25,44,56,136)(26,37,57,141)(27,42,58,134)(28,47,59,139)(29,40,60,144)(30,45,49,137)(31,38,50,142)(32,43,51,135)(33,48,52,140)(34,41,53,133)(35,46,54,138)(36,39,55,143)(73,152,100,185)(74,145,101,190)(75,150,102,183)(76,155,103,188)(77,148,104,181)(78,153,105,186)(79,146,106,191)(80,151,107,184)(81,156,108,189)(82,149,97,182)(83,154,98,187)(84,147,99,192) );

G=PermutationGroup([[(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,25),(9,26),(10,27),(11,28),(12,29),(13,184),(14,185),(15,186),(16,187),(17,188),(18,189),(19,190),(20,191),(21,192),(22,181),(23,182),(24,183),(37,158),(38,159),(39,160),(40,161),(41,162),(42,163),(43,164),(44,165),(45,166),(46,167),(47,168),(48,157),(49,170),(50,171),(51,172),(52,173),(53,174),(54,175),(55,176),(56,177),(57,178),(58,179),(59,180),(60,169),(61,74),(62,75),(63,76),(64,77),(65,78),(66,79),(67,80),(68,81),(69,82),(70,83),(71,84),(72,73),(85,155),(86,156),(87,145),(88,146),(89,147),(90,148),(91,149),(92,150),(93,151),(94,152),(95,153),(96,154),(97,119),(98,120),(99,109),(100,110),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(121,140),(122,141),(123,142),(124,143),(125,144),(126,133),(127,134),(128,135),(129,136),(130,137),(131,138),(132,139)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)], [(1,68,170,118),(2,63,171,113),(3,70,172,120),(4,65,173,115),(5,72,174,110),(6,67,175,117),(7,62,176,112),(8,69,177,119),(9,64,178,114),(10,71,179,109),(11,66,180,116),(12,61,169,111),(13,125,93,161),(14,132,94,168),(15,127,95,163),(16,122,96,158),(17,129,85,165),(18,124,86,160),(19,131,87,167),(20,126,88,162),(21,121,89,157),(22,128,90,164),(23,123,91,159),(24,130,92,166),(25,82,56,97),(26,77,57,104),(27,84,58,99),(28,79,59,106),(29,74,60,101),(30,81,49,108),(31,76,50,103),(32,83,51,98),(33,78,52,105),(34,73,53,100),(35,80,54,107),(36,75,55,102),(37,187,141,154),(38,182,142,149),(39,189,143,156),(40,184,144,151),(41,191,133,146),(42,186,134,153),(43,181,135,148),(44,188,136,155),(45,183,137,150),(46,190,138,145),(47,185,139,152),(48,192,140,147)], [(1,166,170,130),(2,159,171,123),(3,164,172,128),(4,157,173,121),(5,162,174,126),(6,167,175,131),(7,160,176,124),(8,165,177,129),(9,158,178,122),(10,163,179,127),(11,168,180,132),(12,161,169,125),(13,67,93,117),(14,72,94,110),(15,65,95,115),(16,70,96,120),(17,63,85,113),(18,68,86,118),(19,61,87,111),(20,66,88,116),(21,71,89,109),(22,64,90,114),(23,69,91,119),(24,62,92,112),(25,44,56,136),(26,37,57,141),(27,42,58,134),(28,47,59,139),(29,40,60,144),(30,45,49,137),(31,38,50,142),(32,43,51,135),(33,48,52,140),(34,41,53,133),(35,46,54,138),(36,39,55,143),(73,152,100,185),(74,145,101,190),(75,150,102,183),(76,155,103,188),(77,148,104,181),(78,153,105,186),(79,146,106,191),(80,151,107,184),(81,156,108,189),(82,149,97,182),(83,154,98,187),(84,147,99,192)]])

48 conjugacy classes

class 1 2A···2G 3 4A4B4C4D4E4F4G4H4I···4P4Q4R4S4T6A···6G12A···12L
order12···23444444444···444446···612···12
size11···12222244446···6121212122···24···4

48 irreducible representations

dim11111122222244
type+++++++-++--+
imageC1C2C2C2C2C2S3Q8D6D6C4○D4Dic6D42S3Q83S3
kernelC2×C4.Dic6C4.Dic6C2×C4×Dic3C2×Dic3⋊C4C2×C4⋊Dic3C6×C4⋊C4C2×C4⋊C4C2×C12C4⋊C4C22×C4C2×C6C2×C4C22C22
# reps18123114438822

Matrix representation of C2×C4.Dic6 in GL6(𝔽13)

100000
010000
0012000
0001200
000010
000001
,
400000
3100000
003000
0012900
000064
000077
,
800000
550000
001000
000100
00001211
000001
,
120000
12120000
00111200
003200
000096
000044

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,3,0,0,0,0,0,10,0,0,0,0,0,0,3,12,0,0,0,0,0,9,0,0,0,0,0,0,6,7,0,0,0,0,4,7],[8,5,0,0,0,0,0,5,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,11,1],[1,12,0,0,0,0,2,12,0,0,0,0,0,0,11,3,0,0,0,0,12,2,0,0,0,0,0,0,9,4,0,0,0,0,6,4] >;

C2×C4.Dic6 in GAP, Magma, Sage, TeX

C_2\times C_4.{\rm Dic}_6
% in TeX

G:=Group("C2xC4.Dic6");
// GroupNames label

G:=SmallGroup(192,1058);
// by ID

G=gap.SmallGroup(192,1058);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,184,1571,297,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^7,d*b*d^-1=b^5,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽