Extensions 1→N→G→Q→1 with N=C2×SL2(𝔽3) and Q=C4

Direct product G=N×Q with N=C2×SL2(𝔽3) and Q=C4

Semidirect products G=N:Q with N=C2×SL2(𝔽3) and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×SL2(𝔽3))⋊1C4 = (C2×Q8)⋊C12φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)32(C2xSL(2,3)):1C4192,998
(C2×SL2(𝔽3))⋊2C4 = C2×Q8⋊Dic3φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)64(C2xSL(2,3)):2C4192,977
(C2×SL2(𝔽3))⋊3C4 = C23.15S4φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)32(C2xSL(2,3)):3C4192,979
(C2×SL2(𝔽3))⋊4C4 = C2×U2(𝔽3)φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)48(C2xSL(2,3)):4C4192,981
(C2×SL2(𝔽3))⋊5C4 = U2(𝔽3)⋊C2φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)324(C2xSL(2,3)):5C4192,982

Non-split extensions G=N.Q with N=C2×SL2(𝔽3) and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×SL2(𝔽3)).1C4 = M4(2).A4φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)324(C2xSL(2,3)).1C4192,1013
(C2×SL2(𝔽3)).2C4 = C2.U2(𝔽3)φ: C4/C2C2 ⊆ Out C2×SL2(𝔽3)64(C2xSL(2,3)).2C4192,183
(C2×SL2(𝔽3)).3C4 = C8×SL2(𝔽3)φ: trivial image64(C2xSL(2,3)).3C4192,200
(C2×SL2(𝔽3)).4C4 = C2×C8.A4φ: trivial image64(C2xSL(2,3)).4C4192,1012