Extensions 1→N→G→Q→1 with N=C4.A4 and Q=C4

Direct product G=N×Q with N=C4.A4 and Q=C4

Semidirect products G=N:Q with N=C4.A4 and Q=C4
extensionφ:Q→Out NdρLabelID
C4.A41C4 = U2(𝔽3)⋊C2φ: C4/C2C2 ⊆ Out C4.A4324C4.A4:1C4192,982
C4.A42C4 = (C2×C4).S4φ: C4/C2C2 ⊆ Out C4.A464C4.A4:2C4192,985
C4.A43C4 = C2×U2(𝔽3)φ: C4/C2C2 ⊆ Out C4.A448C4.A4:3C4192,981
C4.A44C4 = C4.A4⋊C4φ: C4/C2C2 ⊆ Out C4.A464C4.A4:4C4192,983
C4.A45C4 = C4○D4⋊C12φ: C4/C2C2 ⊆ Out C4.A464C4.A4:5C4192,999

Non-split extensions G=N.Q with N=C4.A4 and Q=C4
extensionφ:Q→Out NdρLabelID
C4.A4.1C4 = C8.7S4φ: C4/C2C2 ⊆ Out C4.A4642C4.A4.1C4192,187
C4.A4.2C4 = M4(2).A4φ: C4/C2C2 ⊆ Out C4.A4324C4.A4.2C4192,1013
C4.A4.3C4 = C16.A4φ: trivial image642C4.A4.3C4192,204
C4.A4.4C4 = C2×C8.A4φ: trivial image64C4.A4.4C4192,1012