Extensions 1→N→G→Q→1 with N=C22 and Q=C4.A4

Direct product G=N×Q with N=C22 and Q=C4.A4

Semidirect products G=N:Q with N=C22 and Q=C4.A4
extensionφ:Q→Aut NdρLabelID
C22⋊(C4.A4) = C4○D4⋊A4φ: C4.A4/C4○D4C3 ⊆ Aut C22246C2^2:(C4.A4)192,1507
C222(C4.A4) = SL2(𝔽3)⋊5D4φ: C4.A4/SL2(𝔽3)C2 ⊆ Aut C2232C2^2:2(C4.A4)192,1003

Non-split extensions G=N.Q with N=C22 and Q=C4.A4
extensionφ:Q→Aut NdρLabelID
C22.1(C4.A4) = C424C4⋊C3φ: C4.A4/C4○D4C3 ⊆ Aut C22246C2^2.1(C4.A4)192,190
C22.2(C4.A4) = C232D4⋊C3φ: C4.A4/C4○D4C3 ⊆ Aut C22126+C2^2.2(C4.A4)192,194
C22.3(C4.A4) = (C22×C4).A4φ: C4.A4/C4○D4C3 ⊆ Aut C22246-C2^2.3(C4.A4)192,196
C22.4(C4.A4) = C23.19(C2×A4)φ: C4.A4/C4○D4C3 ⊆ Aut C22246C2^2.4(C4.A4)192,199
C22.5(C4.A4) = C2×C4×SL2(𝔽3)central extension (φ=1)64C2^2.5(C4.A4)192,996