Extensions 1→N→G→Q→1 with N=C2 and Q=C2×Q82S3

Direct product G=N×Q with N=C2 and Q=C2×Q82S3
dρLabelID
C22×Q82S396C2^2xQ8:2S3192,1366


Non-split extensions G=N.Q with N=C2 and Q=C2×Q82S3
extensionφ:Q→Aut NdρLabelID
C2.1(C2×Q82S3) = C2×C12.Q8central extension (φ=1)192C2.1(C2xQ8:2S3)192,522
C2.2(C2×Q82S3) = C2×C6.D8central extension (φ=1)96C2.2(C2xQ8:2S3)192,524
C2.3(C2×Q82S3) = C4×Q82S3central extension (φ=1)96C2.3(C2xQ8:2S3)192,584
C2.4(C2×Q82S3) = C2×Q82Dic3central extension (φ=1)192C2.4(C2xQ8:2S3)192,783
C2.5(C2×Q82S3) = C4⋊C4.228D6central stem extension (φ=1)96C2.5(C2xQ8:2S3)192,527
C2.6(C2×Q82S3) = Q84Dic6central stem extension (φ=1)192C2.6(C2xQ8:2S3)192,579
C2.7(C2×Q82S3) = Q82D12central stem extension (φ=1)96C2.7(C2xQ8:2S3)192,586
C2.8(C2×Q82S3) = (C2×Q8).49D6central stem extension (φ=1)96C2.8(C2xQ8:2S3)192,602
C2.9(C2×Q82S3) = D12.36D4central stem extension (φ=1)48C2.9(C2xQ8:2S3)192,605
C2.10(C2×Q82S3) = C3⋊C824D4central stem extension (φ=1)96C2.10(C2xQ8:2S3)192,607
C2.11(C2×Q82S3) = C12.9Q16central stem extension (φ=1)192C2.11(C2xQ8:2S3)192,638
C2.12(C2×Q82S3) = C12.SD16central stem extension (φ=1)192C2.12(C2xQ8:2S3)192,639
C2.13(C2×Q82S3) = C125SD16central stem extension (φ=1)96C2.13(C2xQ8:2S3)192,642
C2.14(C2×Q82S3) = D125Q8central stem extension (φ=1)96C2.14(C2xQ8:2S3)192,643
C2.15(C2×Q82S3) = C126SD16central stem extension (φ=1)96C2.15(C2xQ8:2S3)192,644
C2.16(C2×Q82S3) = C12.D8central stem extension (φ=1)96C2.16(C2xQ8:2S3)192,647
C2.17(C2×Q82S3) = (C3×Q8)⋊13D4central stem extension (φ=1)96C2.17(C2xQ8:2S3)192,786

׿
×
𝔽