Copied to
clipboard

G = D12.36D4order 192 = 26·3

6th non-split extension by D12 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.36D4, C4⋊C44D6, (C2×Q8)⋊4D6, (C2×C6)⋊5SD16, C22⋊Q81S3, (C2×C12).77D4, C4.101(S3×D4), (C6×Q8)⋊1C22, C6.47C22≀C2, C12.152(C2×D4), C6.D837C2, C33(C22⋊SD16), C6.72(C2×SD16), (C22×C6).92D4, (C22×C4).143D6, C2.15(C232D6), C2.15(D4⋊D6), C12.55D413C2, C6.116(C8⋊C22), (C2×C12).365C23, C223(Q82S3), (C22×D12).13C2, C23.69(C3⋊D4), (C2×D12).242C22, (C22×C12).169C22, (C2×C3⋊C8)⋊6C22, (C3×C4⋊C4)⋊6C22, (C3×C22⋊Q8)⋊1C2, (C2×Q82S3)⋊8C2, (C2×C6).496(C2×D4), C2.9(C2×Q82S3), (C2×C4).55(C3⋊D4), (C2×C4).465(C22×S3), C22.171(C2×C3⋊D4), SmallGroup(192,605)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D12.36D4
C1C3C6C12C2×C12C2×D12C22×D12 — D12.36D4
C3C6C2×C12 — D12.36D4
C1C22C22×C4C22⋊Q8

Generators and relations for D12.36D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, cac-1=a7, ad=da, cbc-1=a3b, bd=db, dcd=a6c-1 >

Subgroups: 704 in 188 conjugacy classes, 47 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C12, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, C3⋊C8, D12, D12, C2×C12, C2×C12, C3×Q8, C22×S3, C22×C6, C22⋊C8, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C2×C3⋊C8, Q82S3, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×D12, C2×D12, C22×C12, C6×Q8, S3×C23, C22⋊SD16, C6.D8, C12.55D4, C2×Q82S3, C3×C22⋊Q8, C22×D12, D12.36D4
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C3⋊D4, C22×S3, C22≀C2, C2×SD16, C8⋊C22, Q82S3, S3×D4, C2×C3⋊D4, C22⋊SD16, C232D6, C2×Q82S3, D4⋊D6, D12.36D4

Smallest permutation representation of D12.36D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 15)(16 24)(17 23)(18 22)(19 21)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(37 47)(38 46)(39 45)(40 44)(41 43)
(1 44 31 16)(2 39 32 23)(3 46 33 18)(4 41 34 13)(5 48 35 20)(6 43 36 15)(7 38 25 22)(8 45 26 17)(9 40 27 24)(10 47 28 19)(11 42 29 14)(12 37 30 21)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 37)(22 38)(23 39)(24 40)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(16,24)(17,23)(18,22)(19,21)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,47)(38,46)(39,45)(40,44)(41,43), (1,44,31,16)(2,39,32,23)(3,46,33,18)(4,41,34,13)(5,48,35,20)(6,43,36,15)(7,38,25,22)(8,45,26,17)(9,40,27,24)(10,47,28,19)(11,42,29,14)(12,37,30,21), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(16,24)(17,23)(18,22)(19,21)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,47)(38,46)(39,45)(40,44)(41,43), (1,44,31,16)(2,39,32,23)(3,46,33,18)(4,41,34,13)(5,48,35,20)(6,43,36,15)(7,38,25,22)(8,45,26,17)(9,40,27,24)(10,47,28,19)(11,42,29,14)(12,37,30,21), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,37)(22,38)(23,39)(24,40)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,15),(16,24),(17,23),(18,22),(19,21),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(37,47),(38,46),(39,45),(40,44),(41,43)], [(1,44,31,16),(2,39,32,23),(3,46,33,18),(4,41,34,13),(5,48,35,20),(6,43,36,15),(7,38,25,22),(8,45,26,17),(9,40,27,24),(10,47,28,19),(11,42,29,14),(12,37,30,21)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,37),(22,38),(23,39),(24,40),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F12G12H
order12222222223444446666688881212121212121212
size11112212121212222488222441212121244448888

33 irreducible representations

dim11111122222222224444
type+++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D4D6D6D6SD16C3⋊D4C3⋊D4C8⋊C22S3×D4Q82S3D4⋊D6
kernelD12.36D4C6.D8C12.55D4C2×Q82S3C3×C22⋊Q8C22×D12C22⋊Q8D12C2×C12C22×C6C4⋊C4C22×C4C2×Q8C2×C6C2×C4C23C6C4C22C2
# reps12121114111114221222

Matrix representation of D12.36D4 in GL6(𝔽73)

110000
7200000
0072000
0007200
000001
0000720
,
110000
0720000
0072000
0072100
000001
000010
,
43130000
60300000
0072200
0072100
00006767
0000676
,
100000
010000
001000
0017200
0000720
0000072

G:=sub<GL(6,GF(73))| [1,72,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[1,0,0,0,0,0,1,72,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[43,60,0,0,0,0,13,30,0,0,0,0,0,0,72,72,0,0,0,0,2,1,0,0,0,0,0,0,67,67,0,0,0,0,67,6],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

D12.36D4 in GAP, Magma, Sage, TeX

D_{12}._{36}D_4
% in TeX

G:=Group("D12.36D4");
// GroupNames label

G:=SmallGroup(192,605);
// by ID

G=gap.SmallGroup(192,605);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,184,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^3*b,b*d=d*b,d*c*d=a^6*c^-1>;
// generators/relations

׿
×
𝔽