Extensions 1→N→G→Q→1 with N=C3xQ32 and Q=C2

Direct product G=NxQ with N=C3xQ32 and Q=C2
dρLabelID
C6xQ32192C6xQ32192,940

Semidirect products G=N:Q with N=C3xQ32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ32):1C2 = C3:SD64φ: C2/C1C2 ⊆ Out C3xQ32964+(C3xQ32):1C2192,80
(C3xQ32):2C2 = S3xQ32φ: C2/C1C2 ⊆ Out C3xQ32964-(C3xQ32):2C2192,476
(C3xQ32):3C2 = D48:5C2φ: C2/C1C2 ⊆ Out C3xQ32964+(C3xQ32):3C2192,478
(C3xQ32):4C2 = Q32:S3φ: C2/C1C2 ⊆ Out C3xQ32964(C3xQ32):4C2192,477
(C3xQ32):5C2 = C3xSD64φ: C2/C1C2 ⊆ Out C3xQ32962(C3xQ32):5C2192,178
(C3xQ32):6C2 = C3xQ32:C2φ: C2/C1C2 ⊆ Out C3xQ32964(C3xQ32):6C2192,943
(C3xQ32):7C2 = C3xC4oD16φ: trivial image962(C3xQ32):7C2192,941

Non-split extensions G=N.Q with N=C3xQ32 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xQ32).1C2 = C3:Q64φ: C2/C1C2 ⊆ Out C3xQ321924-(C3xQ32).1C2192,81
(C3xQ32).2C2 = C3xQ64φ: C2/C1C2 ⊆ Out C3xQ321922(C3xQ32).2C2192,179

׿
x
:
Z
F
o
wr
Q
<