Copied to
clipboard

G = S3×Q32order 192 = 26·3

Direct product of S3 and Q32

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×Q32, C16.9D6, D6.14D8, Q16.3D6, Dic245C2, C48.7C22, Dic3.5D8, C24.20C23, Dic12.5C22, C32(C2×Q32), C3⋊C8.15D4, C4.8(S3×D4), (S3×Q16).C2, (C3×Q32)⋊2C2, C3⋊Q323C2, C2.23(S3×D8), C6.39(C2×D8), (S3×C16).1C2, (C4×S3).22D4, C12.14(C2×D4), C3⋊C16.7C22, C8.26(C22×S3), (S3×C8).13C22, (C3×Q16).4C22, SmallGroup(192,476)

Series: Derived Chief Lower central Upper central

C1C24 — S3×Q32
C1C3C6C12C24S3×C8S3×Q16 — S3×Q32
C3C6C12C24 — S3×Q32
C1C2C4C8Q32

Generators and relations for S3×Q32
 G = < a,b,c,d | a3=b2=c16=1, d2=c8, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 252 in 82 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, Q8, Dic3, Dic3, C12, C12, D6, C16, C16, C2×C8, Q16, Q16, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C4×S3, C3×Q8, C2×C16, Q32, Q32, C2×Q16, C3⋊C16, C48, S3×C8, Dic12, C3⋊Q16, C3×Q16, S3×Q8, C2×Q32, S3×C16, Dic24, C3⋊Q32, C3×Q32, S3×Q16, S3×Q32
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, Q32, C2×D8, S3×D4, C2×Q32, S3×D8, S3×Q32

Smallest permutation representation of S3×Q32
On 96 points
Generators in S96
(1 46 72)(2 47 73)(3 48 74)(4 33 75)(5 34 76)(6 35 77)(7 36 78)(8 37 79)(9 38 80)(10 39 65)(11 40 66)(12 41 67)(13 42 68)(14 43 69)(15 44 70)(16 45 71)(17 51 89)(18 52 90)(19 53 91)(20 54 92)(21 55 93)(22 56 94)(23 57 95)(24 58 96)(25 59 81)(26 60 82)(27 61 83)(28 62 84)(29 63 85)(30 64 86)(31 49 87)(32 50 88)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 59)(18 60)(19 61)(20 62)(21 63)(22 64)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 58)(33 67)(34 68)(35 69)(36 70)(37 71)(38 72)(39 73)(40 74)(41 75)(42 76)(43 77)(44 78)(45 79)(46 80)(47 65)(48 66)(81 89)(82 90)(83 91)(84 92)(85 93)(86 94)(87 95)(88 96)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 89 9 81)(2 88 10 96)(3 87 11 95)(4 86 12 94)(5 85 13 93)(6 84 14 92)(7 83 15 91)(8 82 16 90)(17 38 25 46)(18 37 26 45)(19 36 27 44)(20 35 28 43)(21 34 29 42)(22 33 30 41)(23 48 31 40)(24 47 32 39)(49 66 57 74)(50 65 58 73)(51 80 59 72)(52 79 60 71)(53 78 61 70)(54 77 62 69)(55 76 63 68)(56 75 64 67)

G:=sub<Sym(96)| (1,46,72)(2,47,73)(3,48,74)(4,33,75)(5,34,76)(6,35,77)(7,36,78)(8,37,79)(9,38,80)(10,39,65)(11,40,66)(12,41,67)(13,42,68)(14,43,69)(15,44,70)(16,45,71)(17,51,89)(18,52,90)(19,53,91)(20,54,92)(21,55,93)(22,56,94)(23,57,95)(24,58,96)(25,59,81)(26,60,82)(27,61,83)(28,62,84)(29,63,85)(30,64,86)(31,49,87)(32,50,88), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,65)(48,66)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,89,9,81)(2,88,10,96)(3,87,11,95)(4,86,12,94)(5,85,13,93)(6,84,14,92)(7,83,15,91)(8,82,16,90)(17,38,25,46)(18,37,26,45)(19,36,27,44)(20,35,28,43)(21,34,29,42)(22,33,30,41)(23,48,31,40)(24,47,32,39)(49,66,57,74)(50,65,58,73)(51,80,59,72)(52,79,60,71)(53,78,61,70)(54,77,62,69)(55,76,63,68)(56,75,64,67)>;

G:=Group( (1,46,72)(2,47,73)(3,48,74)(4,33,75)(5,34,76)(6,35,77)(7,36,78)(8,37,79)(9,38,80)(10,39,65)(11,40,66)(12,41,67)(13,42,68)(14,43,69)(15,44,70)(16,45,71)(17,51,89)(18,52,90)(19,53,91)(20,54,92)(21,55,93)(22,56,94)(23,57,95)(24,58,96)(25,59,81)(26,60,82)(27,61,83)(28,62,84)(29,63,85)(30,64,86)(31,49,87)(32,50,88), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,59)(18,60)(19,61)(20,62)(21,63)(22,64)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,58)(33,67)(34,68)(35,69)(36,70)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,77)(44,78)(45,79)(46,80)(47,65)(48,66)(81,89)(82,90)(83,91)(84,92)(85,93)(86,94)(87,95)(88,96), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,89,9,81)(2,88,10,96)(3,87,11,95)(4,86,12,94)(5,85,13,93)(6,84,14,92)(7,83,15,91)(8,82,16,90)(17,38,25,46)(18,37,26,45)(19,36,27,44)(20,35,28,43)(21,34,29,42)(22,33,30,41)(23,48,31,40)(24,47,32,39)(49,66,57,74)(50,65,58,73)(51,80,59,72)(52,79,60,71)(53,78,61,70)(54,77,62,69)(55,76,63,68)(56,75,64,67) );

G=PermutationGroup([[(1,46,72),(2,47,73),(3,48,74),(4,33,75),(5,34,76),(6,35,77),(7,36,78),(8,37,79),(9,38,80),(10,39,65),(11,40,66),(12,41,67),(13,42,68),(14,43,69),(15,44,70),(16,45,71),(17,51,89),(18,52,90),(19,53,91),(20,54,92),(21,55,93),(22,56,94),(23,57,95),(24,58,96),(25,59,81),(26,60,82),(27,61,83),(28,62,84),(29,63,85),(30,64,86),(31,49,87),(32,50,88)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,59),(18,60),(19,61),(20,62),(21,63),(22,64),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,58),(33,67),(34,68),(35,69),(36,70),(37,71),(38,72),(39,73),(40,74),(41,75),(42,76),(43,77),(44,78),(45,79),(46,80),(47,65),(48,66),(81,89),(82,90),(83,91),(84,92),(85,93),(86,94),(87,95),(88,96)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,89,9,81),(2,88,10,96),(3,87,11,95),(4,86,12,94),(5,85,13,93),(6,84,14,92),(7,83,15,91),(8,82,16,90),(17,38,25,46),(18,37,26,45),(19,36,27,44),(20,35,28,43),(21,34,29,42),(22,33,30,41),(23,48,31,40),(24,47,32,39),(49,66,57,74),(50,65,58,73),(51,80,59,72),(52,79,60,71),(53,78,61,70),(54,77,62,69),(55,76,63,68),(56,75,64,67)]])

33 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 6 8A8B8C8D12A12B12C16A16B16C16D16E16F16G16H24A24B48A48B48C48D
order12223444444688881212121616161616161616242448484848
size1133226882424222664161622226666444444

33 irreducible representations

dim11111122222222444
type+++++++++++++-++-
imageC1C2C2C2C2C2S3D4D4D6D6D8D8Q32S3×D4S3×D8S3×Q32
kernelS3×Q32S3×C16Dic24C3⋊Q32C3×Q32S3×Q16Q32C3⋊C8C4×S3C16Q16Dic3D6S3C4C2C1
# reps11121211112228124

Matrix representation of S3×Q32 in GL4(𝔽97) generated by

969600
1000
0010
0001
,
1000
969600
00960
00096
,
1000
0100
002491
006628
,
1000
0100
004675
008351
G:=sub<GL(4,GF(97))| [96,1,0,0,96,0,0,0,0,0,1,0,0,0,0,1],[1,96,0,0,0,96,0,0,0,0,96,0,0,0,0,96],[1,0,0,0,0,1,0,0,0,0,24,66,0,0,91,28],[1,0,0,0,0,1,0,0,0,0,46,83,0,0,75,51] >;

S3×Q32 in GAP, Magma, Sage, TeX

S_3\times Q_{32}
% in TeX

G:=Group("S3xQ32");
// GroupNames label

G:=SmallGroup(192,476);
// by ID

G=gap.SmallGroup(192,476);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,135,184,346,185,192,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^16=1,d^2=c^8,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽