Extensions 1→N→G→Q→1 with N=M4(2) and Q=Dic3

Direct product G=N×Q with N=M4(2) and Q=Dic3

Semidirect products G=N:Q with N=M4(2) and Q=Dic3
extensionφ:Q→Out NdρLabelID
M4(2)⋊1Dic3 = C23.52D12φ: Dic3/C6C2 ⊆ Out M4(2)96M4(2):1Dic3192,680
M4(2)⋊2Dic3 = M4(2)⋊Dic3φ: Dic3/C6C2 ⊆ Out M4(2)96M4(2):2Dic3192,113
M4(2)⋊3Dic3 = C12.3C42φ: Dic3/C6C2 ⊆ Out M4(2)48M4(2):3Dic3192,114
M4(2)⋊4Dic3 = M4(2)⋊4Dic3φ: Dic3/C6C2 ⊆ Out M4(2)484M4(2):4Dic3192,118
M4(2)⋊5Dic3 = C12.7C42φ: trivial image96M4(2):5Dic3192,681

Non-split extensions G=N.Q with N=M4(2) and Q=Dic3
extensionφ:Q→Out NdρLabelID
M4(2).1Dic3 = C23.9Dic6φ: Dic3/C6C2 ⊆ Out M4(2)484M4(2).1Dic3192,684
M4(2).2Dic3 = C12.4C42φ: Dic3/C6C2 ⊆ Out M4(2)96M4(2).2Dic3192,117
M4(2).3Dic3 = C24.99D4φ: Dic3/C6C2 ⊆ Out M4(2)964M4(2).3Dic3192,120
M4(2).4Dic3 = C24.78C23φ: trivial image964M4(2).4Dic3192,699