# Extensions 1→N→G→Q→1 with N=C4×SL2(𝔽3) and Q=C2

Direct product G=N×Q with N=C4×SL2(𝔽3) and Q=C2
dρLabelID
C2×C4×SL2(𝔽3)64C2xC4xSL(2,3)192,996

Semidirect products G=N:Q with N=C4×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×SL2(𝔽3))⋊1C2 = GL2(𝔽3)⋊C4φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):1C2192,953
(C4×SL2(𝔽3))⋊2C2 = Q8.2D12φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):2C2192,954
(C4×SL2(𝔽3))⋊3C2 = (C2×Q8)⋊C12φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):3C2192,998
(C4×SL2(𝔽3))⋊4C2 = C4○D4⋊C12φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)):4C2192,999
(C4×SL2(𝔽3))⋊5C2 = SL2(𝔽3)⋊5D4φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):5C2192,1003
(C4×SL2(𝔽3))⋊6C2 = Q8⋊D12φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):6C2192,952
(C4×SL2(𝔽3))⋊7C2 = C4×GL2(𝔽3)φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):7C2192,951
(C4×SL2(𝔽3))⋊8C2 = D4×SL2(𝔽3)φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)32(C4xSL(2,3)):8C2192,1004
(C4×SL2(𝔽3))⋊9C2 = SL2(𝔽3)⋊6D4φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)):9C2192,1005
(C4×SL2(𝔽3))⋊10C2 = C4×C4.A4φ: trivial image64(C4xSL(2,3)):10C2192,997

Non-split extensions G=N.Q with N=C4×SL2(𝔽3) and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×SL2(𝔽3)).1C2 = CSU2(𝔽3)⋊C4φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).1C2192,947
(C4×SL2(𝔽3)).2C2 = Q8.Dic6φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).2C2192,948
(C4×SL2(𝔽3)).3C2 = SL2(𝔽3)⋊3Q8φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).3C2192,1006
(C4×SL2(𝔽3)).4C2 = Q8⋊Dic6φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).4C2192,945
(C4×SL2(𝔽3)).5C2 = Q8.D12φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).5C2192,949
(C4×SL2(𝔽3)).6C2 = SL2(𝔽3)⋊Q8φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).6C2192,950
(C4×SL2(𝔽3)).7C2 = C2.U2(𝔽3)φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).7C2192,183
(C4×SL2(𝔽3)).8C2 = C4×CSU2(𝔽3)φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).8C2192,946
(C4×SL2(𝔽3)).9C2 = Q8×SL2(𝔽3)φ: C2/C1C2 ⊆ Out C4×SL2(𝔽3)64(C4xSL(2,3)).9C2192,1007
(C4×SL2(𝔽3)).10C2 = C8×SL2(𝔽3)φ: trivial image64(C4xSL(2,3)).10C2192,200

׿
×
𝔽