Copied to
clipboard

G = C4xGL2(F3)  order 192 = 26·3

Direct product of C4 and GL2(F3)

direct product, non-abelian, soluble

Aliases: C4xGL2(F3), Q8:(C4xS3), C2.5(C4xS4), (C4xQ8):1S3, (C2xC4).22S4, (C2xQ8).8D6, Q8:Dic3:8C2, C22.11(C2xS4), C2.2(C4.6S4), (C4xSL2(F3)):7C2, SL2(F3):1(C2xC4), C2.1(C2xGL2(F3)), (C2xGL2(F3)).3C2, (C2xSL2(F3)).8C22, SmallGroup(192,951)

Series: Derived Chief Lower central Upper central

C1C2Q8SL2(F3) — C4xGL2(F3)
C1C2Q8SL2(F3)C2xSL2(F3)C2xGL2(F3) — C4xGL2(F3)
SL2(F3) — C4xGL2(F3)
C1C2xC4

Generators and relations for C4xGL2(F3)
 G = < a,b,c,d,e | a4=b4=d3=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ece=b-1, dbd-1=bc, ebe=b2c, dcd-1=b, ede=d-1 >

Subgroups: 343 in 88 conjugacy classes, 19 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, C12, D6, C2xC6, C42, C22:C4, C4:C4, C2xC8, SD16, C22xC4, C2xD4, C2xQ8, SL2(F3), C4xS3, C2xDic3, C2xC12, C22xS3, C4xC8, D4:C4, Q8:C4, C4.Q8, C4xD4, C4xQ8, C2xSD16, GL2(F3), C2xSL2(F3), S3xC2xC4, C4xSD16, Q8:Dic3, C4xSL2(F3), C2xGL2(F3), C4xGL2(F3)
Quotients: C1, C2, C4, C22, S3, C2xC4, D6, C4xS3, S4, GL2(F3), C2xS4, C4xS4, C2xGL2(F3), C4.6S4, C4xGL2(F3)

Smallest permutation representation of C4xGL2(F3)
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 29 12 22)(2 30 9 23)(3 31 10 24)(4 32 11 21)(5 25 17 13)(6 26 18 14)(7 27 19 15)(8 28 20 16)
(1 17 12 5)(2 18 9 6)(3 19 10 7)(4 20 11 8)(13 29 25 22)(14 30 26 23)(15 31 27 24)(16 32 28 21)
(5 13 22)(6 14 23)(7 15 24)(8 16 21)(17 25 29)(18 26 30)(19 27 31)(20 28 32)
(5 29)(6 30)(7 31)(8 32)(13 25)(14 26)(15 27)(16 28)(17 22)(18 23)(19 24)(20 21)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,12,22)(2,30,9,23)(3,31,10,24)(4,32,11,21)(5,25,17,13)(6,26,18,14)(7,27,19,15)(8,28,20,16), (1,17,12,5)(2,18,9,6)(3,19,10,7)(4,20,11,8)(13,29,25,22)(14,30,26,23)(15,31,27,24)(16,32,28,21), (5,13,22)(6,14,23)(7,15,24)(8,16,21)(17,25,29)(18,26,30)(19,27,31)(20,28,32), (5,29)(6,30)(7,31)(8,32)(13,25)(14,26)(15,27)(16,28)(17,22)(18,23)(19,24)(20,21)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,29,12,22)(2,30,9,23)(3,31,10,24)(4,32,11,21)(5,25,17,13)(6,26,18,14)(7,27,19,15)(8,28,20,16), (1,17,12,5)(2,18,9,6)(3,19,10,7)(4,20,11,8)(13,29,25,22)(14,30,26,23)(15,31,27,24)(16,32,28,21), (5,13,22)(6,14,23)(7,15,24)(8,16,21)(17,25,29)(18,26,30)(19,27,31)(20,28,32), (5,29)(6,30)(7,31)(8,32)(13,25)(14,26)(15,27)(16,28)(17,22)(18,23)(19,24)(20,21) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,29,12,22),(2,30,9,23),(3,31,10,24),(4,32,11,21),(5,25,17,13),(6,26,18,14),(7,27,19,15),(8,28,20,16)], [(1,17,12,5),(2,18,9,6),(3,19,10,7),(4,20,11,8),(13,29,25,22),(14,30,26,23),(15,31,27,24),(16,32,28,21)], [(5,13,22),(6,14,23),(7,15,24),(8,16,21),(17,25,29),(18,26,30),(19,27,31),(20,28,32)], [(5,29),(6,30),(7,31),(8,32),(13,25),(14,26),(15,27),(16,28),(17,22),(18,23),(19,24),(20,21)]])

32 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A···8H12A12B12C12D
order122222344444444446668···812121212
size1111121281111666612128886···68888

32 irreducible representations

dim111112222233344
type+++++++++
imageC1C2C2C2C4S3D6C4xS3GL2(F3)C4.6S4S4C2xS4C4xS4GL2(F3)C4.6S4
kernelC4xGL2(F3)Q8:Dic3C4xSL2(F3)C2xGL2(F3)GL2(F3)C4xQ8C2xQ8Q8C4C2C2xC4C22C2C4C2
# reps111141124422422

Matrix representation of C4xGL2(F3) in GL4(F73) generated by

27000
02700
00270
00027
,
1000
0100
005352
003320
,
1000
0100
005340
002120
,
07200
17200
00072
00172
,
0100
1000
0001
0010
G:=sub<GL(4,GF(73))| [27,0,0,0,0,27,0,0,0,0,27,0,0,0,0,27],[1,0,0,0,0,1,0,0,0,0,53,33,0,0,52,20],[1,0,0,0,0,1,0,0,0,0,53,21,0,0,40,20],[0,1,0,0,72,72,0,0,0,0,0,1,0,0,72,72],[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0] >;

C4xGL2(F3) in GAP, Magma, Sage, TeX

C_4\times {\rm GL}_2({\mathbb F}_3)
% in TeX

G:=Group("C4xGL(2,3)");
// GroupNames label

G:=SmallGroup(192,951);
// by ID

G=gap.SmallGroup(192,951);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,2,-2,36,451,1684,655,172,1013,404,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^3=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*c*e=b^-1,d*b*d^-1=b*c,e*b*e=b^2*c,d*c*d^-1=b,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<