Extensions 1→N→G→Q→1 with N=C2 and Q=C122Q8

Direct product G=N×Q with N=C2 and Q=C122Q8
dρLabelID
C2×C122Q8192C2xC12:2Q8192,1027


Non-split extensions G=N.Q with N=C2 and Q=C122Q8
extensionφ:Q→Aut NdρLabelID
C2.1(C122Q8) = C124(C4⋊C4)central extension (φ=1)192C2.1(C12:2Q8)192,487
C2.2(C122Q8) = (C2×Dic6)⋊7C4central extension (φ=1)192C2.2(C12:2Q8)192,488
C2.3(C122Q8) = C4210Dic3central extension (φ=1)192C2.3(C12:2Q8)192,494
C2.4(C122Q8) = (C2×C4)⋊Dic6central stem extension (φ=1)192C2.4(C12:2Q8)192,215
C2.5(C122Q8) = (C22×C4).85D6central stem extension (φ=1)192C2.5(C12:2Q8)192,220
C2.6(C122Q8) = C249Q8central stem extension (φ=1)192C2.6(C12:2Q8)192,239
C2.7(C122Q8) = C248Q8central stem extension (φ=1)192C2.7(C12:2Q8)192,241
C2.8(C122Q8) = C24.13Q8central stem extension (φ=1)192C2.8(C12:2Q8)192,242
C2.9(C122Q8) = C8⋊Dic6central stem extension (φ=1)192C2.9(C12:2Q8)192,261

׿
×
𝔽