Copied to
clipboard

G = C122Q8order 96 = 25·3

1st semidirect product of C12 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C122Q8, C42Dic6, C4.4D12, C12.27D4, C42.4S3, C31(C4⋊Q8), C6.1(C2×D4), C6.2(C2×Q8), (C4×C12).2C2, C2.4(C2×D12), (C2×C4).73D6, C4⋊Dic3.4C2, C2.4(C2×Dic6), (C2×C6).10C23, (C2×Dic6).2C2, (C2×C12).85C22, C22.34(C22×S3), (C2×Dic3).1C22, SmallGroup(96,76)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C122Q8
C1C3C6C2×C6C2×Dic3C2×Dic6 — C122Q8
C3C2×C6 — C122Q8
C1C22C42

Generators and relations for C122Q8
 G = < a,b,c | a12=b4=1, c2=b2, ab=ba, cac-1=a-1, cbc-1=b-1 >

Subgroups: 138 in 68 conjugacy classes, 41 normal (11 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C2×C4, C2×C4, C2×C4, Q8, Dic3, C12, C2×C6, C42, C4⋊C4, C2×Q8, Dic6, C2×Dic3, C2×C12, C2×C12, C4⋊Q8, C4⋊Dic3, C4×C12, C2×Dic6, C122Q8
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, Dic6, D12, C22×S3, C4⋊Q8, C2×Dic6, C2×D12, C122Q8

Character table of C122Q8

 class 12A2B2C34A4B4C4D4E4F4G4H4I4J6A6B6C12A12B12C12D12E12F12G12H12I12J12K12L
 size 1111222222212121212222222222222222
ρ1111111111111111111111111111111    trivial
ρ211111-1-111-1-1-1-111111-11-1-11-1-1-11-1-11    linear of order 2
ρ3111111-1-1-11-1-111-11111-1-11-1-111-1-1-1-1    linear of order 2
ρ411111-11-1-1-111-11-1111-1-11-1-11-1-1-111-1    linear of order 2
ρ5111111-1-1-11-11-1-111111-1-11-1-111-1-1-1-1    linear of order 2
ρ611111-11-1-1-11-11-11111-1-11-1-11-1-1-111-1    linear of order 2
ρ711111111111-1-1-1-1111111111111111    linear of order 2
ρ811111-1-111-1-111-1-1111-11-1-11-1-1-11-1-11    linear of order 2
ρ922-2-2200-22000000-2-220200-2000-2002    orthogonal lifted from D4
ρ102222-12-2-2-22-20000-1-1-1-111-111-1-11111    orthogonal lifted from D6
ρ112222-12222220000-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1222-2-22002-2000000-2-220-2002000200-2    orthogonal lifted from D4
ρ1322-2-2-1002-200000011-131-3-3-13-33-1-331    orthogonal lifted from D12
ρ142222-1-2-222-2-20000-1-1-11-111-1111-111-1    orthogonal lifted from D6
ρ1522-2-2-100-2200000011-13-13-31-3-3313-3-1    orthogonal lifted from D12
ρ1622-2-2-100-2200000011-1-3-1-33133-31-33-1    orthogonal lifted from D12
ρ172222-1-22-2-2-220000-1-1-111-111-1111-1-11    orthogonal lifted from D6
ρ1822-2-2-1002-200000011-1-3133-1-33-3-13-31    orthogonal lifted from D12
ρ192-22-220-200020000-22-2002002000-2-20    symplectic lifted from Q8, Schur index 2
ρ202-2-2222000-2000002-2-2-200-200220000    symplectic lifted from Q8, Schur index 2
ρ212-2-222-20002000002-2-2200200-2-20000    symplectic lifted from Q8, Schur index 2
ρ222-2-22-12000-200000-11113313-3-1-1-3-33-3    symplectic lifted from Dic6, Schur index 2
ρ232-22-2202000-20000-22-200-200-2000220    symplectic lifted from Q8, Schur index 2
ρ242-22-2-102000-200001-113-31-3313-3-3-1-13    symplectic lifted from Dic6, Schur index 2
ρ252-2-22-1-2000200000-111-13-3-13311-33-3-3    symplectic lifted from Dic6, Schur index 2
ρ262-22-2-102000-200001-11-3313-31-333-1-1-3    symplectic lifted from Dic6, Schur index 2
ρ272-22-2-10-2000200001-1133-1-3-3-13-3311-3    symplectic lifted from Dic6, Schur index 2
ρ282-2-22-1-2000200000-111-1-33-1-3-3113-333    symplectic lifted from Dic6, Schur index 2
ρ292-2-22-12000-200000-1111-3-31-33-1-133-33    symplectic lifted from Dic6, Schur index 2
ρ302-22-2-10-2000200001-11-3-3-133-1-33-3113    symplectic lifted from Dic6, Schur index 2

Smallest permutation representation of C122Q8
Regular action on 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 26 66 16)(2 27 67 17)(3 28 68 18)(4 29 69 19)(5 30 70 20)(6 31 71 21)(7 32 72 22)(8 33 61 23)(9 34 62 24)(10 35 63 13)(11 36 64 14)(12 25 65 15)(37 50 80 94)(38 51 81 95)(39 52 82 96)(40 53 83 85)(41 54 84 86)(42 55 73 87)(43 56 74 88)(44 57 75 89)(45 58 76 90)(46 59 77 91)(47 60 78 92)(48 49 79 93)
(1 80 66 37)(2 79 67 48)(3 78 68 47)(4 77 69 46)(5 76 70 45)(6 75 71 44)(7 74 72 43)(8 73 61 42)(9 84 62 41)(10 83 63 40)(11 82 64 39)(12 81 65 38)(13 85 35 53)(14 96 36 52)(15 95 25 51)(16 94 26 50)(17 93 27 49)(18 92 28 60)(19 91 29 59)(20 90 30 58)(21 89 31 57)(22 88 32 56)(23 87 33 55)(24 86 34 54)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,26,66,16)(2,27,67,17)(3,28,68,18)(4,29,69,19)(5,30,70,20)(6,31,71,21)(7,32,72,22)(8,33,61,23)(9,34,62,24)(10,35,63,13)(11,36,64,14)(12,25,65,15)(37,50,80,94)(38,51,81,95)(39,52,82,96)(40,53,83,85)(41,54,84,86)(42,55,73,87)(43,56,74,88)(44,57,75,89)(45,58,76,90)(46,59,77,91)(47,60,78,92)(48,49,79,93), (1,80,66,37)(2,79,67,48)(3,78,68,47)(4,77,69,46)(5,76,70,45)(6,75,71,44)(7,74,72,43)(8,73,61,42)(9,84,62,41)(10,83,63,40)(11,82,64,39)(12,81,65,38)(13,85,35,53)(14,96,36,52)(15,95,25,51)(16,94,26,50)(17,93,27,49)(18,92,28,60)(19,91,29,59)(20,90,30,58)(21,89,31,57)(22,88,32,56)(23,87,33,55)(24,86,34,54)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,26,66,16)(2,27,67,17)(3,28,68,18)(4,29,69,19)(5,30,70,20)(6,31,71,21)(7,32,72,22)(8,33,61,23)(9,34,62,24)(10,35,63,13)(11,36,64,14)(12,25,65,15)(37,50,80,94)(38,51,81,95)(39,52,82,96)(40,53,83,85)(41,54,84,86)(42,55,73,87)(43,56,74,88)(44,57,75,89)(45,58,76,90)(46,59,77,91)(47,60,78,92)(48,49,79,93), (1,80,66,37)(2,79,67,48)(3,78,68,47)(4,77,69,46)(5,76,70,45)(6,75,71,44)(7,74,72,43)(8,73,61,42)(9,84,62,41)(10,83,63,40)(11,82,64,39)(12,81,65,38)(13,85,35,53)(14,96,36,52)(15,95,25,51)(16,94,26,50)(17,93,27,49)(18,92,28,60)(19,91,29,59)(20,90,30,58)(21,89,31,57)(22,88,32,56)(23,87,33,55)(24,86,34,54) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,26,66,16),(2,27,67,17),(3,28,68,18),(4,29,69,19),(5,30,70,20),(6,31,71,21),(7,32,72,22),(8,33,61,23),(9,34,62,24),(10,35,63,13),(11,36,64,14),(12,25,65,15),(37,50,80,94),(38,51,81,95),(39,52,82,96),(40,53,83,85),(41,54,84,86),(42,55,73,87),(43,56,74,88),(44,57,75,89),(45,58,76,90),(46,59,77,91),(47,60,78,92),(48,49,79,93)], [(1,80,66,37),(2,79,67,48),(3,78,68,47),(4,77,69,46),(5,76,70,45),(6,75,71,44),(7,74,72,43),(8,73,61,42),(9,84,62,41),(10,83,63,40),(11,82,64,39),(12,81,65,38),(13,85,35,53),(14,96,36,52),(15,95,25,51),(16,94,26,50),(17,93,27,49),(18,92,28,60),(19,91,29,59),(20,90,30,58),(21,89,31,57),(22,88,32,56),(23,87,33,55),(24,86,34,54)]])

C122Q8 is a maximal subgroup of
C4.Dic12  C12.47D8  C12.2D8  C249Q8  C12.14Q16  C248Q8  C85D12  C4.5D24  C124Q16  C8⋊Dic6  C42.14D6  C42.20D6  C8.D12  Q8.14D12  C12⋊SD16  D123Q8  D124Q8  C4⋊Dic12  Dic63Q8  Dic64Q8  C12.50D8  C12.38SD16  D4.2D12  Q84Dic6  Q85Dic6  C127Q16  C42.62D6  C42.65D6  C42.68D6  C42.71D6  C12.16D8  C124SD16  C12.17D8  C12.9Q16  C12.SD16  C123Q16  C12.Q16  C42.274D6  C42.276D6  C42.89D6  C42.90D6  C42.92D6  C42.99D6  D4×Dic6  C42.106D6  D46Dic6  D1224D4  D46D12  C42.117D6  Q8×Dic6  Dic610Q8  Q87Dic6  Q8×D12  D1210Q8  C42.135D6  C42.141D6  C42.144D6  C42.148D6  C42.156D6  C42.165D6  C42.238D6  S3×C4⋊Q8  C42.241D6  C362Q8  Dic3⋊Dic6  C123Dic6  C126Dic6  Dic5⋊Dic6  C60⋊Q8  C608Q8
C122Q8 is a maximal quotient of
(C2×C4)⋊Dic6  (C22×C4).85D6  C249Q8  C248Q8  C24.13Q8  C8⋊Dic6  C124(C4⋊C4)  (C2×Dic6)⋊7C4  C4210Dic3  C362Q8  Dic3⋊Dic6  C123Dic6  C126Dic6  Dic5⋊Dic6  C60⋊Q8  C608Q8

Matrix representation of C122Q8 in GL4(𝔽13) generated by

01200
1000
0070
0062
,
01200
1000
00120
00012
,
10400
4300
0068
0077
G:=sub<GL(4,GF(13))| [0,1,0,0,12,0,0,0,0,0,7,6,0,0,0,2],[0,1,0,0,12,0,0,0,0,0,12,0,0,0,0,12],[10,4,0,0,4,3,0,0,0,0,6,7,0,0,8,7] >;

C122Q8 in GAP, Magma, Sage, TeX

C_{12}\rtimes_2Q_8
% in TeX

G:=Group("C12:2Q8");
// GroupNames label

G:=SmallGroup(96,76);
// by ID

G=gap.SmallGroup(96,76);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,217,103,218,50,2309]);
// Polycyclic

G:=Group<a,b,c|a^12=b^4=1,c^2=b^2,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C122Q8 in TeX

׿
×
𝔽