Extensions 1→N→G→Q→1 with N=C2 and Q=C3xC4oD8

Direct product G=NxQ with N=C2 and Q=C3xC4oD8
dρLabelID
C6xC4oD896C6xC4oD8192,1461


Non-split extensions G=N.Q with N=C2 and Q=C3xC4oD8
extensionφ:Q→Aut NdρLabelID
C2.1(C3xC4oD8) = C3xC23.24D4central extension (φ=1)96C2.1(C3xC4oD8)192,849
C2.2(C3xC4oD8) = C3xC23.25D4central extension (φ=1)96C2.2(C3xC4oD8)192,860
C2.3(C3xC4oD8) = C12xD8central extension (φ=1)96C2.3(C3xC4oD8)192,870
C2.4(C3xC4oD8) = C12xSD16central extension (φ=1)96C2.4(C3xC4oD8)192,871
C2.5(C3xC4oD8) = C12xQ16central extension (φ=1)192C2.5(C3xC4oD8)192,872
C2.6(C3xC4oD8) = C3xD4:D4central stem extension (φ=1)96C2.6(C3xC4oD8)192,882
C2.7(C3xC4oD8) = C3xD4.7D4central stem extension (φ=1)96C2.7(C3xC4oD8)192,885
C2.8(C3xC4oD8) = C3xD4.2D4central stem extension (φ=1)96C2.8(C3xC4oD8)192,896
C2.9(C3xC4oD8) = C3xQ8.D4central stem extension (φ=1)96C2.9(C3xC4oD8)192,897
C2.10(C3xC4oD8) = C3xC8:8D4central stem extension (φ=1)96C2.10(C3xC4oD8)192,898
C2.11(C3xC4oD8) = C3xC8:7D4central stem extension (φ=1)96C2.11(C3xC4oD8)192,899
C2.12(C3xC4oD8) = C3xC8.18D4central stem extension (φ=1)96C2.12(C3xC4oD8)192,900
C2.13(C3xC4oD8) = C3xD4.Q8central stem extension (φ=1)96C2.13(C3xC4oD8)192,911
C2.14(C3xC4oD8) = C3xQ8.Q8central stem extension (φ=1)192C2.14(C3xC4oD8)192,912
C2.15(C3xC4oD8) = C3xC23.19D4central stem extension (φ=1)96C2.15(C3xC4oD8)192,915
C2.16(C3xC4oD8) = C3xC23.20D4central stem extension (φ=1)96C2.16(C3xC4oD8)192,918
C2.17(C3xC4oD8) = C3xC42.78C22central stem extension (φ=1)96C2.17(C3xC4oD8)192,921
C2.18(C3xC4oD8) = C3xC8.12D4central stem extension (φ=1)96C2.18(C3xC4oD8)192,928
C2.19(C3xC4oD8) = C3xC8.5Q8central stem extension (φ=1)192C2.19(C3xC4oD8)192,932

׿
x
:
Z
F
o
wr
Q
<