Copied to
clipboard

G = C12×SD16order 192 = 26·3

Direct product of C12 and SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C12×SD16, (C4×C8)⋊11C6, C85(C2×C12), (C4×Q8)⋊5C6, C2427(C2×C4), (C4×C24)⋊27C2, Q82(C2×C12), C4.Q814C6, (C4×D4).4C6, (Q8×C12)⋊21C2, D4.1(C2×C12), C2.13(D4×C12), C6.115(C4×D4), C2.4(C6×SD16), Q8⋊C421C6, (D4×C12).19C2, D4⋊C4.8C6, (C2×C12).361D4, C42.71(C2×C6), (C2×SD16).5C6, C6.84(C2×SD16), C22.52(C6×D4), C6.117(C4○D8), C4.10(C22×C12), (C6×SD16).10C2, C12.257(C4○D4), (C4×C12).356C22, (C2×C24).437C22, (C2×C12).905C23, C12.155(C22×C4), (C6×D4).291C22, (C6×Q8).254C22, C2.4(C3×C4○D8), C4.2(C3×C4○D4), C4⋊C4.46(C2×C6), (C2×C8).66(C2×C6), (C3×Q8)⋊13(C2×C4), (C3×C4.Q8)⋊29C2, (C2×C4).51(C3×D4), (C3×D4).18(C2×C4), (C2×D4).49(C2×C6), (C2×C6).628(C2×D4), (C2×Q8).51(C2×C6), (C3×Q8⋊C4)⋊44C2, (C2×C4).80(C22×C6), (C3×D4⋊C4).17C2, (C3×C4⋊C4).367C22, SmallGroup(192,871)

Series: Derived Chief Lower central Upper central

C1C4 — C12×SD16
C1C2C22C2×C4C2×C12C3×C4⋊C4C3×Q8⋊C4 — C12×SD16
C1C2C4 — C12×SD16
C1C2×C12C4×C12 — C12×SD16

Generators and relations for C12×SD16
 G = < a,b,c | a12=b8=c2=1, ab=ba, ac=ca, cbc=b3 >

Subgroups: 202 in 122 conjugacy classes, 74 normal (50 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C12, C12, C12, C2×C6, C2×C6, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×Q8, C24, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C4×C8, D4⋊C4, Q8⋊C4, C4.Q8, C4×D4, C4×Q8, C2×SD16, C4×C12, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, C2×C24, C3×SD16, C22×C12, C6×D4, C6×Q8, C4×SD16, C4×C24, C3×D4⋊C4, C3×Q8⋊C4, C3×C4.Q8, D4×C12, Q8×C12, C6×SD16, C12×SD16
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C23, C12, C2×C6, SD16, C22×C4, C2×D4, C4○D4, C2×C12, C3×D4, C22×C6, C4×D4, C2×SD16, C4○D8, C3×SD16, C22×C12, C6×D4, C3×C4○D4, C4×SD16, D4×C12, C6×SD16, C3×C4○D8, C12×SD16

Smallest permutation representation of C12×SD16
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 59 17 70 42 85 76 26)(2 60 18 71 43 86 77 27)(3 49 19 72 44 87 78 28)(4 50 20 61 45 88 79 29)(5 51 21 62 46 89 80 30)(6 52 22 63 47 90 81 31)(7 53 23 64 48 91 82 32)(8 54 24 65 37 92 83 33)(9 55 13 66 38 93 84 34)(10 56 14 67 39 94 73 35)(11 57 15 68 40 95 74 36)(12 58 16 69 41 96 75 25)
(13 84)(14 73)(15 74)(16 75)(17 76)(18 77)(19 78)(20 79)(21 80)(22 81)(23 82)(24 83)(25 96)(26 85)(27 86)(28 87)(29 88)(30 89)(31 90)(32 91)(33 92)(34 93)(35 94)(36 95)(49 72)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(56 67)(57 68)(58 69)(59 70)(60 71)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,59,17,70,42,85,76,26)(2,60,18,71,43,86,77,27)(3,49,19,72,44,87,78,28)(4,50,20,61,45,88,79,29)(5,51,21,62,46,89,80,30)(6,52,22,63,47,90,81,31)(7,53,23,64,48,91,82,32)(8,54,24,65,37,92,83,33)(9,55,13,66,38,93,84,34)(10,56,14,67,39,94,73,35)(11,57,15,68,40,95,74,36)(12,58,16,69,41,96,75,25), (13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,96)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(49,72)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,59,17,70,42,85,76,26)(2,60,18,71,43,86,77,27)(3,49,19,72,44,87,78,28)(4,50,20,61,45,88,79,29)(5,51,21,62,46,89,80,30)(6,52,22,63,47,90,81,31)(7,53,23,64,48,91,82,32)(8,54,24,65,37,92,83,33)(9,55,13,66,38,93,84,34)(10,56,14,67,39,94,73,35)(11,57,15,68,40,95,74,36)(12,58,16,69,41,96,75,25), (13,84)(14,73)(15,74)(16,75)(17,76)(18,77)(19,78)(20,79)(21,80)(22,81)(23,82)(24,83)(25,96)(26,85)(27,86)(28,87)(29,88)(30,89)(31,90)(32,91)(33,92)(34,93)(35,94)(36,95)(49,72)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,59,17,70,42,85,76,26),(2,60,18,71,43,86,77,27),(3,49,19,72,44,87,78,28),(4,50,20,61,45,88,79,29),(5,51,21,62,46,89,80,30),(6,52,22,63,47,90,81,31),(7,53,23,64,48,91,82,32),(8,54,24,65,37,92,83,33),(9,55,13,66,38,93,84,34),(10,56,14,67,39,94,73,35),(11,57,15,68,40,95,74,36),(12,58,16,69,41,96,75,25)], [(13,84),(14,73),(15,74),(16,75),(17,76),(18,77),(19,78),(20,79),(21,80),(22,81),(23,82),(24,83),(25,96),(26,85),(27,86),(28,87),(29,88),(30,89),(31,90),(32,91),(33,92),(34,93),(35,94),(36,95),(49,72),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(56,67),(57,68),(58,69),(59,70),(60,71)]])

84 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F4G4H4I···4N6A···6F6G6H6I6J8A···8H12A···12H12I···12P12Q···12AB24A···24P
order12222233444444444···46···666668···812···1212···1212···1224···24
size11114411111122224···41···144442···21···12···24···42···2

84 irreducible representations

dim11111111111111111122222222
type+++++++++
imageC1C2C2C2C2C2C2C2C3C4C6C6C6C6C6C6C6C12D4SD16C4○D4C3×D4C4○D8C3×SD16C3×C4○D4C3×C4○D8
kernelC12×SD16C4×C24C3×D4⋊C4C3×Q8⋊C4C3×C4.Q8D4×C12Q8×C12C6×SD16C4×SD16C3×SD16C4×C8D4⋊C4Q8⋊C4C4.Q8C4×D4C4×Q8C2×SD16SD16C2×C12C12C12C2×C4C6C4C4C2
# reps111111112822222221624244848

Matrix representation of C12×SD16 in GL3(𝔽73) generated by

7000
0270
0027
,
7200
0067
01212
,
7200
011
0072
G:=sub<GL(3,GF(73))| [70,0,0,0,27,0,0,0,27],[72,0,0,0,0,12,0,67,12],[72,0,0,0,1,0,0,1,72] >;

C12×SD16 in GAP, Magma, Sage, TeX

C_{12}\times {\rm SD}_{16}
% in TeX

G:=Group("C12xSD16");
// GroupNames label

G:=SmallGroup(192,871);
// by ID

G=gap.SmallGroup(192,871);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,680,268,4204,2111,172]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^3>;
// generators/relations

׿
×
𝔽