Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C10

Direct product G=N×Q with N=C2 and Q=S3×C2×C10
dρLabelID
S3×C22×C10120S3xC2^2xC10240,206


Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C10
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C10) = S3×C2×C20central extension (φ=1)120C2.1(S3xC2xC10)240,166
C2.2(S3×C2×C10) = Dic3×C2×C10central extension (φ=1)240C2.2(S3xC2xC10)240,173
C2.3(S3×C2×C10) = C10×Dic6central stem extension (φ=1)240C2.3(S3xC2xC10)240,165
C2.4(S3×C2×C10) = C10×D12central stem extension (φ=1)120C2.4(S3xC2xC10)240,167
C2.5(S3×C2×C10) = C5×C4○D12central stem extension (φ=1)1202C2.5(S3xC2xC10)240,168
C2.6(S3×C2×C10) = C5×S3×D4central stem extension (φ=1)604C2.6(S3xC2xC10)240,169
C2.7(S3×C2×C10) = C5×D42S3central stem extension (φ=1)1204C2.7(S3xC2xC10)240,170
C2.8(S3×C2×C10) = C5×S3×Q8central stem extension (φ=1)1204C2.8(S3xC2xC10)240,171
C2.9(S3×C2×C10) = C5×Q83S3central stem extension (φ=1)1204C2.9(S3xC2xC10)240,172
C2.10(S3×C2×C10) = C10×C3⋊D4central stem extension (φ=1)120C2.10(S3xC2xC10)240,174

׿
×
𝔽