Copied to
clipboard

G = C5×C4○D12order 240 = 24·3·5

Direct product of C5 and C4○D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5×C4○D12, D125C10, C20.60D6, Dic65C10, C30.51C23, C60.68C22, (C2×C20)⋊7S3, (S3×C20)⋊9C2, (C4×S3)⋊4C10, (C2×C12)⋊4C10, (C2×C60)⋊11C2, C3⋊D43C10, (C5×D12)⋊11C2, C1513(C4○D4), C4.16(S3×C10), D6.1(C2×C10), (C2×C10).20D6, C12.16(C2×C10), (C5×Dic6)⋊11C2, C22.2(S3×C10), C6.4(C22×C10), C10.41(C22×S3), (C2×C30).50C22, Dic3.2(C2×C10), (S3×C10).12C22, (C5×Dic3).14C22, C31(C5×C4○D4), (C2×C4)⋊3(C5×S3), C2.5(S3×C2×C10), (C5×C3⋊D4)⋊7C2, (C2×C6).11(C2×C10), SmallGroup(240,168)

Series: Derived Chief Lower central Upper central

C1C6 — C5×C4○D12
C1C3C6C30S3×C10S3×C20 — C5×C4○D12
C3C6 — C5×C4○D12
C1C20C2×C20

Generators and relations for C5×C4○D12
 G = < a,b,c,d | a5=b4=d2=1, c6=b2, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b2c5 >

Subgroups: 152 in 80 conjugacy classes, 46 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C10, C10, Dic3, C12, D6, C2×C6, C15, C4○D4, C20, C20, C2×C10, C2×C10, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C5×S3, C30, C30, C2×C20, C2×C20, C5×D4, C5×Q8, C4○D12, C5×Dic3, C60, S3×C10, C2×C30, C5×C4○D4, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, C2×C60, C5×C4○D12
Quotients: C1, C2, C22, C5, S3, C23, C10, D6, C4○D4, C2×C10, C22×S3, C5×S3, C22×C10, C4○D12, S3×C10, C5×C4○D4, S3×C2×C10, C5×C4○D12

Smallest permutation representation of C5×C4○D12
On 120 points
Generators in S120
(1 54 100 28 92)(2 55 101 29 93)(3 56 102 30 94)(4 57 103 31 95)(5 58 104 32 96)(6 59 105 33 85)(7 60 106 34 86)(8 49 107 35 87)(9 50 108 36 88)(10 51 97 25 89)(11 52 98 26 90)(12 53 99 27 91)(13 37 115 74 61)(14 38 116 75 62)(15 39 117 76 63)(16 40 118 77 64)(17 41 119 78 65)(18 42 120 79 66)(19 43 109 80 67)(20 44 110 81 68)(21 45 111 82 69)(22 46 112 83 70)(23 47 113 84 71)(24 48 114 73 72)
(1 114 7 120)(2 115 8 109)(3 116 9 110)(4 117 10 111)(5 118 11 112)(6 119 12 113)(13 35 19 29)(14 36 20 30)(15 25 21 31)(16 26 22 32)(17 27 23 33)(18 28 24 34)(37 87 43 93)(38 88 44 94)(39 89 45 95)(40 90 46 96)(41 91 47 85)(42 92 48 86)(49 80 55 74)(50 81 56 75)(51 82 57 76)(52 83 58 77)(53 84 59 78)(54 73 60 79)(61 107 67 101)(62 108 68 102)(63 97 69 103)(64 98 70 104)(65 99 71 105)(66 100 72 106)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 3)(4 12)(5 11)(6 10)(7 9)(14 24)(15 23)(16 22)(17 21)(18 20)(25 33)(26 32)(27 31)(28 30)(34 36)(38 48)(39 47)(40 46)(41 45)(42 44)(50 60)(51 59)(52 58)(53 57)(54 56)(62 72)(63 71)(64 70)(65 69)(66 68)(73 75)(76 84)(77 83)(78 82)(79 81)(85 89)(86 88)(90 96)(91 95)(92 94)(97 105)(98 104)(99 103)(100 102)(106 108)(110 120)(111 119)(112 118)(113 117)(114 116)

G:=sub<Sym(120)| (1,54,100,28,92)(2,55,101,29,93)(3,56,102,30,94)(4,57,103,31,95)(5,58,104,32,96)(6,59,105,33,85)(7,60,106,34,86)(8,49,107,35,87)(9,50,108,36,88)(10,51,97,25,89)(11,52,98,26,90)(12,53,99,27,91)(13,37,115,74,61)(14,38,116,75,62)(15,39,117,76,63)(16,40,118,77,64)(17,41,119,78,65)(18,42,120,79,66)(19,43,109,80,67)(20,44,110,81,68)(21,45,111,82,69)(22,46,112,83,70)(23,47,113,84,71)(24,48,114,73,72), (1,114,7,120)(2,115,8,109)(3,116,9,110)(4,117,10,111)(5,118,11,112)(6,119,12,113)(13,35,19,29)(14,36,20,30)(15,25,21,31)(16,26,22,32)(17,27,23,33)(18,28,24,34)(37,87,43,93)(38,88,44,94)(39,89,45,95)(40,90,46,96)(41,91,47,85)(42,92,48,86)(49,80,55,74)(50,81,56,75)(51,82,57,76)(52,83,58,77)(53,84,59,78)(54,73,60,79)(61,107,67,101)(62,108,68,102)(63,97,69,103)(64,98,70,104)(65,99,71,105)(66,100,72,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,3)(4,12)(5,11)(6,10)(7,9)(14,24)(15,23)(16,22)(17,21)(18,20)(25,33)(26,32)(27,31)(28,30)(34,36)(38,48)(39,47)(40,46)(41,45)(42,44)(50,60)(51,59)(52,58)(53,57)(54,56)(62,72)(63,71)(64,70)(65,69)(66,68)(73,75)(76,84)(77,83)(78,82)(79,81)(85,89)(86,88)(90,96)(91,95)(92,94)(97,105)(98,104)(99,103)(100,102)(106,108)(110,120)(111,119)(112,118)(113,117)(114,116)>;

G:=Group( (1,54,100,28,92)(2,55,101,29,93)(3,56,102,30,94)(4,57,103,31,95)(5,58,104,32,96)(6,59,105,33,85)(7,60,106,34,86)(8,49,107,35,87)(9,50,108,36,88)(10,51,97,25,89)(11,52,98,26,90)(12,53,99,27,91)(13,37,115,74,61)(14,38,116,75,62)(15,39,117,76,63)(16,40,118,77,64)(17,41,119,78,65)(18,42,120,79,66)(19,43,109,80,67)(20,44,110,81,68)(21,45,111,82,69)(22,46,112,83,70)(23,47,113,84,71)(24,48,114,73,72), (1,114,7,120)(2,115,8,109)(3,116,9,110)(4,117,10,111)(5,118,11,112)(6,119,12,113)(13,35,19,29)(14,36,20,30)(15,25,21,31)(16,26,22,32)(17,27,23,33)(18,28,24,34)(37,87,43,93)(38,88,44,94)(39,89,45,95)(40,90,46,96)(41,91,47,85)(42,92,48,86)(49,80,55,74)(50,81,56,75)(51,82,57,76)(52,83,58,77)(53,84,59,78)(54,73,60,79)(61,107,67,101)(62,108,68,102)(63,97,69,103)(64,98,70,104)(65,99,71,105)(66,100,72,106), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,3)(4,12)(5,11)(6,10)(7,9)(14,24)(15,23)(16,22)(17,21)(18,20)(25,33)(26,32)(27,31)(28,30)(34,36)(38,48)(39,47)(40,46)(41,45)(42,44)(50,60)(51,59)(52,58)(53,57)(54,56)(62,72)(63,71)(64,70)(65,69)(66,68)(73,75)(76,84)(77,83)(78,82)(79,81)(85,89)(86,88)(90,96)(91,95)(92,94)(97,105)(98,104)(99,103)(100,102)(106,108)(110,120)(111,119)(112,118)(113,117)(114,116) );

G=PermutationGroup([[(1,54,100,28,92),(2,55,101,29,93),(3,56,102,30,94),(4,57,103,31,95),(5,58,104,32,96),(6,59,105,33,85),(7,60,106,34,86),(8,49,107,35,87),(9,50,108,36,88),(10,51,97,25,89),(11,52,98,26,90),(12,53,99,27,91),(13,37,115,74,61),(14,38,116,75,62),(15,39,117,76,63),(16,40,118,77,64),(17,41,119,78,65),(18,42,120,79,66),(19,43,109,80,67),(20,44,110,81,68),(21,45,111,82,69),(22,46,112,83,70),(23,47,113,84,71),(24,48,114,73,72)], [(1,114,7,120),(2,115,8,109),(3,116,9,110),(4,117,10,111),(5,118,11,112),(6,119,12,113),(13,35,19,29),(14,36,20,30),(15,25,21,31),(16,26,22,32),(17,27,23,33),(18,28,24,34),(37,87,43,93),(38,88,44,94),(39,89,45,95),(40,90,46,96),(41,91,47,85),(42,92,48,86),(49,80,55,74),(50,81,56,75),(51,82,57,76),(52,83,58,77),(53,84,59,78),(54,73,60,79),(61,107,67,101),(62,108,68,102),(63,97,69,103),(64,98,70,104),(65,99,71,105),(66,100,72,106)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,3),(4,12),(5,11),(6,10),(7,9),(14,24),(15,23),(16,22),(17,21),(18,20),(25,33),(26,32),(27,31),(28,30),(34,36),(38,48),(39,47),(40,46),(41,45),(42,44),(50,60),(51,59),(52,58),(53,57),(54,56),(62,72),(63,71),(64,70),(65,69),(66,68),(73,75),(76,84),(77,83),(78,82),(79,81),(85,89),(86,88),(90,96),(91,95),(92,94),(97,105),(98,104),(99,103),(100,102),(106,108),(110,120),(111,119),(112,118),(113,117),(114,116)]])

C5×C4○D12 is a maximal subgroup of
C60.98D4  C60.99D4  D12.2Dic5  D12.Dic5  D20.34D6  C60.36D4  C20.60D12  C60.38D4  D12.37D10  D12.33D10  D20.39D6  C30.C24  D2024D6  D2025D6  D2029D6  C5×S3×C4○D4
C5×C4○D12 is a maximal quotient of
C20×Dic6  C20×D12  C20×C3⋊D4

90 conjugacy classes

class 1 2A2B2C2D 3 4A4B4C4D4E5A5B5C5D6A6B6C10A10B10C10D10E10F10G10H10I···10P12A12B12C12D15A15B15C15D20A···20H20I20J20K20L20M···20T30A···30L60A···60P
order122223444445555666101010101010101010···10121212121515151520···202020202020···2030···3060···60
size112662112661111222111122226···6222222221···122226···62···22···2

90 irreducible representations

dim1111111111112222222222
type+++++++++
imageC1C2C2C2C2C2C5C10C10C10C10C10S3D6D6C4○D4C5×S3C4○D12S3×C10S3×C10C5×C4○D4C5×C4○D12
kernelC5×C4○D12C5×Dic6S3×C20C5×D12C5×C3⋊D4C2×C60C4○D12Dic6C4×S3D12C3⋊D4C2×C12C2×C20C20C2×C10C15C2×C4C5C4C22C3C1
# reps11212144848412124484816

Matrix representation of C5×C4○D12 in GL2(𝔽61) generated by

200
020
,
110
011
,
2323
3846
,
060
600
G:=sub<GL(2,GF(61))| [20,0,0,20],[11,0,0,11],[23,38,23,46],[0,60,60,0] >;

C5×C4○D12 in GAP, Magma, Sage, TeX

C_5\times C_4\circ D_{12}
% in TeX

G:=Group("C5xC4oD12");
// GroupNames label

G:=SmallGroup(240,168);
// by ID

G=gap.SmallGroup(240,168);
# by ID

G:=PCGroup([6,-2,-2,-2,-5,-2,-3,247,794,5765]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=d^2=1,c^6=b^2,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c^5>;
// generators/relations

׿
×
𝔽