Extensions 1→N→G→Q→1 with N=C15 and Q=C3×C6

Direct product G=N×Q with N=C15 and Q=C3×C6

Semidirect products G=N:Q with N=C15 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
C151(C3×C6) = C32×D15φ: C3×C6/C32C2 ⊆ Aut C1590C15:1(C3xC6)270,25
C152(C3×C6) = D5×C33φ: C3×C6/C32C2 ⊆ Aut C15135C15:2(C3xC6)270,23
C153(C3×C6) = S3×C3×C15φ: C3×C6/C32C2 ⊆ Aut C1590C15:3(C3xC6)270,24

Non-split extensions G=N.Q with N=C15 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
C15.1(C3×C6) = D5×C3×C9φ: C3×C6/C32C2 ⊆ Aut C15135C15.1(C3xC6)270,5
C15.2(C3×C6) = D5×He3φ: C3×C6/C32C2 ⊆ Aut C15456C15.2(C3xC6)270,6
C15.3(C3×C6) = D5×3- 1+2φ: C3×C6/C32C2 ⊆ Aut C15456C15.3(C3xC6)270,7
C15.4(C3×C6) = C10×He3central extension (φ=1)903C15.4(C3xC6)270,21
C15.5(C3×C6) = C10×3- 1+2central extension (φ=1)903C15.5(C3xC6)270,22