direct product, cyclic, abelian, monomial
Aliases: C15, also denoted Z15, SmallGroup(15,1)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C15 |
C1 — C15 |
C1 — C15 |
Generators and relations for C15
G = < a | a15=1 >
Character table of C15
class | 1 | 3A | 3B | 5A | 5B | 5C | 5D | 15A | 15B | 15C | 15D | 15E | 15F | 15G | 15H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ53 | ζ54 | ζ5 | ζ52 | ζ54 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ53 | ζ52 | linear of order 5 |
ρ5 | 1 | ζ32 | ζ3 | ζ53 | ζ54 | ζ5 | ζ52 | ζ32ζ54 | ζ3ζ53 | ζ3ζ54 | ζ3ζ5 | ζ32ζ5 | ζ32ζ52 | ζ32ζ53 | ζ3ζ52 | linear of order 15 faithful |
ρ6 | 1 | ζ3 | ζ32 | ζ53 | ζ54 | ζ5 | ζ52 | ζ3ζ54 | ζ32ζ53 | ζ32ζ54 | ζ32ζ5 | ζ3ζ5 | ζ3ζ52 | ζ3ζ53 | ζ32ζ52 | linear of order 15 faithful |
ρ7 | 1 | 1 | 1 | ζ5 | ζ53 | ζ52 | ζ54 | ζ53 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ5 | ζ54 | linear of order 5 |
ρ8 | 1 | ζ32 | ζ3 | ζ5 | ζ53 | ζ52 | ζ54 | ζ32ζ53 | ζ3ζ5 | ζ3ζ53 | ζ3ζ52 | ζ32ζ52 | ζ32ζ54 | ζ32ζ5 | ζ3ζ54 | linear of order 15 faithful |
ρ9 | 1 | ζ3 | ζ32 | ζ5 | ζ53 | ζ52 | ζ54 | ζ3ζ53 | ζ32ζ5 | ζ32ζ53 | ζ32ζ52 | ζ3ζ52 | ζ3ζ54 | ζ3ζ5 | ζ32ζ54 | linear of order 15 faithful |
ρ10 | 1 | 1 | 1 | ζ54 | ζ52 | ζ53 | ζ5 | ζ52 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ54 | ζ5 | linear of order 5 |
ρ11 | 1 | ζ32 | ζ3 | ζ54 | ζ52 | ζ53 | ζ5 | ζ32ζ52 | ζ3ζ54 | ζ3ζ52 | ζ3ζ53 | ζ32ζ53 | ζ32ζ5 | ζ32ζ54 | ζ3ζ5 | linear of order 15 faithful |
ρ12 | 1 | ζ3 | ζ32 | ζ54 | ζ52 | ζ53 | ζ5 | ζ3ζ52 | ζ32ζ54 | ζ32ζ52 | ζ32ζ53 | ζ3ζ53 | ζ3ζ5 | ζ3ζ54 | ζ32ζ5 | linear of order 15 faithful |
ρ13 | 1 | 1 | 1 | ζ52 | ζ5 | ζ54 | ζ53 | ζ5 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ52 | ζ53 | linear of order 5 |
ρ14 | 1 | ζ32 | ζ3 | ζ52 | ζ5 | ζ54 | ζ53 | ζ32ζ5 | ζ3ζ52 | ζ3ζ5 | ζ3ζ54 | ζ32ζ54 | ζ32ζ53 | ζ32ζ52 | ζ3ζ53 | linear of order 15 faithful |
ρ15 | 1 | ζ3 | ζ32 | ζ52 | ζ5 | ζ54 | ζ53 | ζ3ζ5 | ζ32ζ52 | ζ32ζ5 | ζ32ζ54 | ζ3ζ54 | ζ3ζ53 | ζ3ζ52 | ζ32ζ53 | linear of order 15 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)
G:=sub<Sym(15)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)]])
G:=TransitiveGroup(15,1);
C15 is a maximal subgroup of
D15 F16 He5⋊C3 C31⋊C15
C15 is a maximal quotient of F16 C31⋊C15
action | f(x) | Disc(f) |
---|---|---|
15T1 | x15-2x14-23x13+42x12+182x11-300x10-614x9+885x8+918x7-1112x6-525x5+508x4+60x3-65x2+x+1 | 710·1112·432·12312·15832·543612 |
Matrix representation of C15 ►in GL1(𝔽31) generated by
19 |
G:=sub<GL(1,GF(31))| [19] >;
C15 in GAP, Magma, Sage, TeX
C_{15}
% in TeX
G:=Group("C15");
// GroupNames label
G:=SmallGroup(15,1);
// by ID
G=gap.SmallGroup(15,1);
# by ID
G:=PCGroup([2,-3,-5]);
// Polycyclic
G:=Group<a|a^15=1>;
// generators/relations
Export
Subgroup lattice of C15 in TeX
Character table of C15 in TeX