Extensions 1→N→G→Q→1 with N=C2×D4 and Q=C3⋊S3

Direct product G=N×Q with N=C2×D4 and Q=C3⋊S3
dρLabelID
C2×D4×C3⋊S372C2xD4xC3:S3288,1007

Semidirect products G=N:Q with N=C2×D4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1(C3⋊S3) = C2×C327D8φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4):1(C3:S3)288,788
(C2×D4)⋊2(C3⋊S3) = C62.131D4φ: C3⋊S3/C32C2 ⊆ Out C2×D472(C2xD4):2(C3:S3)288,789
(C2×D4)⋊3(C3⋊S3) = C6213D4φ: C3⋊S3/C32C2 ⊆ Out C2×D472(C2xD4):3(C3:S3)288,794
(C2×D4)⋊4(C3⋊S3) = C62.256C23φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4):4(C3:S3)288,795
(C2×D4)⋊5(C3⋊S3) = C6214D4φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4):5(C3:S3)288,796
(C2×D4)⋊6(C3⋊S3) = C62.258C23φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4):6(C3:S3)288,797
(C2×D4)⋊7(C3⋊S3) = C3282+ 1+4φ: C3⋊S3/C32C2 ⊆ Out C2×D472(C2xD4):7(C3:S3)288,1009
(C2×D4)⋊8(C3⋊S3) = C2×C12.D6φ: trivial image144(C2xD4):8(C3:S3)288,1008

Non-split extensions G=N.Q with N=C2×D4 and Q=C3⋊S3
extensionφ:Q→Out NdρLabelID
(C2×D4).1(C3⋊S3) = C62.116D4φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4).1(C3:S3)288,307
(C2×D4).2(C3⋊S3) = (C6×D4).S3φ: C3⋊S3/C32C2 ⊆ Out C2×D472(C2xD4).2(C3:S3)288,308
(C2×D4).3(C3⋊S3) = C62.38D4φ: C3⋊S3/C32C2 ⊆ Out C2×D472(C2xD4).3(C3:S3)288,309
(C2×D4).4(C3⋊S3) = C2×C329SD16φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4).4(C3:S3)288,790
(C2×D4).5(C3⋊S3) = C62.72D4φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4).5(C3:S3)288,792
(C2×D4).6(C3⋊S3) = C62.254C23φ: C3⋊S3/C32C2 ⊆ Out C2×D4144(C2xD4).6(C3:S3)288,793
(C2×D4).7(C3⋊S3) = D4×C3⋊Dic3φ: trivial image144(C2xD4).7(C3:S3)288,791

׿
×
𝔽