Copied to
clipboard

G = C2×C12.D6order 288 = 25·32

Direct product of C2 and C12.D6

direct product, metabelian, supersoluble, monomial

Aliases: C2×C12.D6, C62.278C23, (C6×D4)⋊6S3, (C3×D4)⋊17D6, C65(D42S3), (C2×C12).169D6, C6.59(S3×C23), (C3×C6).58C24, (C22×C6).101D6, C12.110(C22×S3), (C3×C12).129C23, (C6×C12).168C22, (D4×C32)⋊24C22, C327D412C22, C3⋊Dic3.47C23, (C2×C62).84C22, C324Q823C22, D45(C2×C3⋊S3), (D4×C3×C6)⋊13C2, (C2×D4)⋊8(C3⋊S3), C36(C2×D42S3), C3216(C2×C4○D4), C2.7(C23×C3⋊S3), (C3×C6)⋊10(C4○D4), (C4×C3⋊S3)⋊15C22, C23.24(C2×C3⋊S3), C4.20(C22×C3⋊S3), (C2×C3⋊S3).51C23, (C2×C327D4)⋊19C2, (C2×C324Q8)⋊21C2, C22.1(C22×C3⋊S3), (C2×C6).287(C22×S3), (C22×C3⋊Dic3)⋊15C2, (C2×C3⋊Dic3)⋊27C22, (C22×C3⋊S3).107C22, (C2×C4×C3⋊S3)⋊8C2, (C2×C4).60(C2×C3⋊S3), SmallGroup(288,1008)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C2×C12.D6
C1C3C32C3×C6C2×C3⋊S3C22×C3⋊S3C2×C4×C3⋊S3 — C2×C12.D6
C32C3×C6 — C2×C12.D6
C1C22C2×D4

Generators and relations for C2×C12.D6
 G = < a,b,c,d | a2=b12=c6=1, d2=b6, ab=ba, ac=ca, ad=da, cbc-1=b7, dbd-1=b-1, dcd-1=b6c-1 >

Subgroups: 1508 in 492 conjugacy classes, 165 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C3⋊S3, C3×C6, C3×C6, C3×C6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C2×C4○D4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, C2×Dic6, S3×C2×C4, D42S3, C22×Dic3, C2×C3⋊D4, C6×D4, C324Q8, C4×C3⋊S3, C2×C3⋊Dic3, C2×C3⋊Dic3, C327D4, C6×C12, D4×C32, C22×C3⋊S3, C2×C62, C2×D42S3, C2×C324Q8, C2×C4×C3⋊S3, C12.D6, C22×C3⋊Dic3, C2×C327D4, D4×C3×C6, C2×C12.D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C3⋊S3, C22×S3, C2×C4○D4, C2×C3⋊S3, D42S3, S3×C23, C22×C3⋊S3, C2×D42S3, C12.D6, C23×C3⋊S3, C2×C12.D6

Smallest permutation representation of C2×C12.D6
On 144 points
Generators in S144
(1 53)(2 54)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 49)(10 50)(11 51)(12 52)(13 80)(14 81)(15 82)(16 83)(17 84)(18 73)(19 74)(20 75)(21 76)(22 77)(23 78)(24 79)(25 135)(26 136)(27 137)(28 138)(29 139)(30 140)(31 141)(32 142)(33 143)(34 144)(35 133)(36 134)(37 131)(38 132)(39 121)(40 122)(41 123)(42 124)(43 125)(44 126)(45 127)(46 128)(47 129)(48 130)(61 106)(62 107)(63 108)(64 97)(65 98)(66 99)(67 100)(68 101)(69 102)(70 103)(71 104)(72 105)(85 119)(86 120)(87 109)(88 110)(89 111)(90 112)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 23 38 110 25 103)(2 18 39 117 26 98)(3 13 40 112 27 105)(4 20 41 119 28 100)(5 15 42 114 29 107)(6 22 43 109 30 102)(7 17 44 116 31 97)(8 24 45 111 32 104)(9 19 46 118 33 99)(10 14 47 113 34 106)(11 21 48 120 35 101)(12 16 37 115 36 108)(49 74 128 96 143 66)(50 81 129 91 144 61)(51 76 130 86 133 68)(52 83 131 93 134 63)(53 78 132 88 135 70)(54 73 121 95 136 65)(55 80 122 90 137 72)(56 75 123 85 138 67)(57 82 124 92 139 62)(58 77 125 87 140 69)(59 84 126 94 141 64)(60 79 127 89 142 71)
(1 103 7 97)(2 102 8 108)(3 101 9 107)(4 100 10 106)(5 99 11 105)(6 98 12 104)(13 29 19 35)(14 28 20 34)(15 27 21 33)(16 26 22 32)(17 25 23 31)(18 36 24 30)(37 111 43 117)(38 110 44 116)(39 109 45 115)(40 120 46 114)(41 119 47 113)(42 118 48 112)(49 62 55 68)(50 61 56 67)(51 72 57 66)(52 71 58 65)(53 70 59 64)(54 69 60 63)(73 134 79 140)(74 133 80 139)(75 144 81 138)(76 143 82 137)(77 142 83 136)(78 141 84 135)(85 129 91 123)(86 128 92 122)(87 127 93 121)(88 126 94 132)(89 125 95 131)(90 124 96 130)

G:=sub<Sym(144)| (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,49)(10,50)(11,51)(12,52)(13,80)(14,81)(15,82)(16,83)(17,84)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,143)(34,144)(35,133)(36,134)(37,131)(38,132)(39,121)(40,122)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(61,106)(62,107)(63,108)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(85,119)(86,120)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,23,38,110,25,103)(2,18,39,117,26,98)(3,13,40,112,27,105)(4,20,41,119,28,100)(5,15,42,114,29,107)(6,22,43,109,30,102)(7,17,44,116,31,97)(8,24,45,111,32,104)(9,19,46,118,33,99)(10,14,47,113,34,106)(11,21,48,120,35,101)(12,16,37,115,36,108)(49,74,128,96,143,66)(50,81,129,91,144,61)(51,76,130,86,133,68)(52,83,131,93,134,63)(53,78,132,88,135,70)(54,73,121,95,136,65)(55,80,122,90,137,72)(56,75,123,85,138,67)(57,82,124,92,139,62)(58,77,125,87,140,69)(59,84,126,94,141,64)(60,79,127,89,142,71), (1,103,7,97)(2,102,8,108)(3,101,9,107)(4,100,10,106)(5,99,11,105)(6,98,12,104)(13,29,19,35)(14,28,20,34)(15,27,21,33)(16,26,22,32)(17,25,23,31)(18,36,24,30)(37,111,43,117)(38,110,44,116)(39,109,45,115)(40,120,46,114)(41,119,47,113)(42,118,48,112)(49,62,55,68)(50,61,56,67)(51,72,57,66)(52,71,58,65)(53,70,59,64)(54,69,60,63)(73,134,79,140)(74,133,80,139)(75,144,81,138)(76,143,82,137)(77,142,83,136)(78,141,84,135)(85,129,91,123)(86,128,92,122)(87,127,93,121)(88,126,94,132)(89,125,95,131)(90,124,96,130)>;

G:=Group( (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,49)(10,50)(11,51)(12,52)(13,80)(14,81)(15,82)(16,83)(17,84)(18,73)(19,74)(20,75)(21,76)(22,77)(23,78)(24,79)(25,135)(26,136)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,143)(34,144)(35,133)(36,134)(37,131)(38,132)(39,121)(40,122)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(61,106)(62,107)(63,108)(64,97)(65,98)(66,99)(67,100)(68,101)(69,102)(70,103)(71,104)(72,105)(85,119)(86,120)(87,109)(88,110)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,23,38,110,25,103)(2,18,39,117,26,98)(3,13,40,112,27,105)(4,20,41,119,28,100)(5,15,42,114,29,107)(6,22,43,109,30,102)(7,17,44,116,31,97)(8,24,45,111,32,104)(9,19,46,118,33,99)(10,14,47,113,34,106)(11,21,48,120,35,101)(12,16,37,115,36,108)(49,74,128,96,143,66)(50,81,129,91,144,61)(51,76,130,86,133,68)(52,83,131,93,134,63)(53,78,132,88,135,70)(54,73,121,95,136,65)(55,80,122,90,137,72)(56,75,123,85,138,67)(57,82,124,92,139,62)(58,77,125,87,140,69)(59,84,126,94,141,64)(60,79,127,89,142,71), (1,103,7,97)(2,102,8,108)(3,101,9,107)(4,100,10,106)(5,99,11,105)(6,98,12,104)(13,29,19,35)(14,28,20,34)(15,27,21,33)(16,26,22,32)(17,25,23,31)(18,36,24,30)(37,111,43,117)(38,110,44,116)(39,109,45,115)(40,120,46,114)(41,119,47,113)(42,118,48,112)(49,62,55,68)(50,61,56,67)(51,72,57,66)(52,71,58,65)(53,70,59,64)(54,69,60,63)(73,134,79,140)(74,133,80,139)(75,144,81,138)(76,143,82,137)(77,142,83,136)(78,141,84,135)(85,129,91,123)(86,128,92,122)(87,127,93,121)(88,126,94,132)(89,125,95,131)(90,124,96,130) );

G=PermutationGroup([[(1,53),(2,54),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,49),(10,50),(11,51),(12,52),(13,80),(14,81),(15,82),(16,83),(17,84),(18,73),(19,74),(20,75),(21,76),(22,77),(23,78),(24,79),(25,135),(26,136),(27,137),(28,138),(29,139),(30,140),(31,141),(32,142),(33,143),(34,144),(35,133),(36,134),(37,131),(38,132),(39,121),(40,122),(41,123),(42,124),(43,125),(44,126),(45,127),(46,128),(47,129),(48,130),(61,106),(62,107),(63,108),(64,97),(65,98),(66,99),(67,100),(68,101),(69,102),(70,103),(71,104),(72,105),(85,119),(86,120),(87,109),(88,110),(89,111),(90,112),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,23,38,110,25,103),(2,18,39,117,26,98),(3,13,40,112,27,105),(4,20,41,119,28,100),(5,15,42,114,29,107),(6,22,43,109,30,102),(7,17,44,116,31,97),(8,24,45,111,32,104),(9,19,46,118,33,99),(10,14,47,113,34,106),(11,21,48,120,35,101),(12,16,37,115,36,108),(49,74,128,96,143,66),(50,81,129,91,144,61),(51,76,130,86,133,68),(52,83,131,93,134,63),(53,78,132,88,135,70),(54,73,121,95,136,65),(55,80,122,90,137,72),(56,75,123,85,138,67),(57,82,124,92,139,62),(58,77,125,87,140,69),(59,84,126,94,141,64),(60,79,127,89,142,71)], [(1,103,7,97),(2,102,8,108),(3,101,9,107),(4,100,10,106),(5,99,11,105),(6,98,12,104),(13,29,19,35),(14,28,20,34),(15,27,21,33),(16,26,22,32),(17,25,23,31),(18,36,24,30),(37,111,43,117),(38,110,44,116),(39,109,45,115),(40,120,46,114),(41,119,47,113),(42,118,48,112),(49,62,55,68),(50,61,56,67),(51,72,57,66),(52,71,58,65),(53,70,59,64),(54,69,60,63),(73,134,79,140),(74,133,80,139),(75,144,81,138),(76,143,82,137),(77,142,83,136),(78,141,84,135),(85,129,91,123),(86,128,92,122),(87,127,93,121),(88,126,94,132),(89,125,95,131),(90,124,96,130)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I3A3B3C3D4A4B4C4D4E4F4G4H4I4J6A···6L6M···6AB12A···12H
order1222222222333344444444446···66···612···12
size1111222218182222229999181818182···24···44···4

60 irreducible representations

dim1111111222224
type+++++++++++-
imageC1C2C2C2C2C2C2S3D6D6D6C4○D4D42S3
kernelC2×C12.D6C2×C324Q8C2×C4×C3⋊S3C12.D6C22×C3⋊Dic3C2×C327D4D4×C3×C6C6×D4C2×C12C3×D4C22×C6C3×C6C6
# reps11182214416848

Matrix representation of C2×C12.D6 in GL6(𝔽13)

1200000
0120000
0012000
0001200
0000120
0000012
,
800000
050000
0011200
001000
000001
0000121
,
050000
800000
0001200
0011200
0000012
0000112
,
080000
800000
0011200
0001200
000001
000010

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[8,0,0,0,0,0,0,5,0,0,0,0,0,0,1,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,12,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2×C12.D6 in GAP, Magma, Sage, TeX

C_2\times C_{12}.D_6
% in TeX

G:=Group("C2xC12.D6");
// GroupNames label

G:=SmallGroup(288,1008);
// by ID

G=gap.SmallGroup(288,1008);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,100,675,185,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^12=c^6=1,d^2=b^6,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^7,d*b*d^-1=b^-1,d*c*d^-1=b^6*c^-1>;
// generators/relations

׿
×
𝔽