Extensions 1→N→G→Q→1 with N=C2xQ8 and Q=C3:S3

Direct product G=NxQ with N=C2xQ8 and Q=C3:S3
dρLabelID
C2xQ8xC3:S3144C2xQ8xC3:S3288,1010

Semidirect products G=N:Q with N=C2xQ8 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C2xQ8):1(C3:S3) = C2xC6.6S4φ: C3:S3/C3S3 ⊆ Out C2xQ848(C2xQ8):1(C3:S3)288,911
(C2xQ8):2(C3:S3) = SL2(F3).D6φ: C3:S3/C3S3 ⊆ Out C2xQ8484(C2xQ8):2(C3:S3)288,912
(C2xQ8):3(C3:S3) = C2xC32:11SD16φ: C3:S3/C32C2 ⊆ Out C2xQ8144(C2xQ8):3(C3:S3)288,798
(C2xQ8):4(C3:S3) = C62.134D4φ: C3:S3/C32C2 ⊆ Out C2xQ8144(C2xQ8):4(C3:S3)288,799
(C2xQ8):5(C3:S3) = C62.261C23φ: C3:S3/C32C2 ⊆ Out C2xQ8144(C2xQ8):5(C3:S3)288,803
(C2xQ8):6(C3:S3) = C62.262C23φ: C3:S3/C32C2 ⊆ Out C2xQ8144(C2xQ8):6(C3:S3)288,804
(C2xQ8):7(C3:S3) = C32:72- 1+4φ: C3:S3/C32C2 ⊆ Out C2xQ8144(C2xQ8):7(C3:S3)288,1012
(C2xQ8):8(C3:S3) = C2xC12.26D6φ: trivial image144(C2xQ8):8(C3:S3)288,1011

Non-split extensions G=N.Q with N=C2xQ8 and Q=C3:S3
extensionφ:Q→Out NdρLabelID
(C2xQ8).1(C3:S3) = C6.GL2(F3)φ: C3:S3/C3S3 ⊆ Out C2xQ896(C2xQ8).1(C3:S3)288,403
(C2xQ8).2(C3:S3) = C2xC6.5S4φ: C3:S3/C3S3 ⊆ Out C2xQ896(C2xQ8).2(C3:S3)288,910
(C2xQ8).3(C3:S3) = C62.117D4φ: C3:S3/C32C2 ⊆ Out C2xQ8288(C2xQ8).3(C3:S3)288,310
(C2xQ8).4(C3:S3) = (C6xC12).C4φ: C3:S3/C32C2 ⊆ Out C2xQ8144(C2xQ8).4(C3:S3)288,311
(C2xQ8).5(C3:S3) = C2xC32:7Q16φ: C3:S3/C32C2 ⊆ Out C2xQ8288(C2xQ8).5(C3:S3)288,800
(C2xQ8).6(C3:S3) = C62.259C23φ: C3:S3/C32C2 ⊆ Out C2xQ8288(C2xQ8).6(C3:S3)288,801
(C2xQ8).7(C3:S3) = Q8xC3:Dic3φ: trivial image288(C2xQ8).7(C3:S3)288,802

׿
x
:
Z
F
o
wr
Q
<