# Extensions 1→N→G→Q→1 with N=C22×C6 and Q=A4

Direct product G=N×Q with N=C22×C6 and Q=A4
dρLabelID
A4×C22×C672A4xC2^2xC6288,1041

Semidirect products G=N:Q with N=C22×C6 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C22×C6)⋊1A4 = C3×C24⋊C6φ: A4/C1A4 ⊆ Aut C22×C6246(C2^2xC6):1A4288,634
(C22×C6)⋊2A4 = C3×C23⋊A4φ: A4/C1A4 ⊆ Aut C22×C6244(C2^2xC6):2A4288,987
(C22×C6)⋊3A4 = C6×C22⋊A4φ: A4/C22C3 ⊆ Aut C22×C636(C2^2xC6):3A4288,1042

Non-split extensions G=N.Q with N=C22×C6 and Q=A4
extensionφ:Q→Aut NdρLabelID
(C22×C6).1A4 = C24⋊C18φ: A4/C1A4 ⊆ Aut C22×C6366(C2^2xC6).1A4288,73
(C22×C6).2A4 = C42⋊C18φ: A4/C1A4 ⊆ Aut C22×C6726(C2^2xC6).2A4288,74
(C22×C6).3A4 = C422C18φ: A4/C1A4 ⊆ Aut C22×C6366(C2^2xC6).3A4288,75
(C22×C6).4A4 = 2+ 1+42C9φ: A4/C1A4 ⊆ Aut C22×C6724(C2^2xC6).4A4288,351
(C22×C6).5A4 = C3×C42⋊C6φ: A4/C1A4 ⊆ Aut C22×C6486(C2^2xC6).5A4288,635
(C22×C6).6A4 = C3×C23.A4φ: A4/C1A4 ⊆ Aut C22×C6366(C2^2xC6).6A4288,636
(C22×C6).7A4 = C2.(C42⋊C9)φ: A4/C22C3 ⊆ Aut C22×C6366(C2^2xC6).7A4288,3
(C22×C6).8A4 = C2×C42⋊C9φ: A4/C22C3 ⊆ Aut C22×C6363(C2^2xC6).8A4288,71
(C22×C6).9A4 = C3×C23.3A4φ: A4/C22C3 ⊆ Aut C22×C6366(C2^2xC6).9A4288,230
(C22×C6).10A4 = C22⋊(Q8⋊C9)φ: A4/C22C3 ⊆ Aut C22×C6726(C2^2xC6).10A4288,350
(C22×C6).11A4 = C6×C42⋊C3φ: A4/C22C3 ⊆ Aut C22×C6363(C2^2xC6).11A4288,632
(C22×C6).12A4 = C2×C24⋊C9φ: A4/C22C3 ⊆ Aut C22×C636(C2^2xC6).12A4288,838
(C22×C6).13A4 = C3×Q8⋊A4φ: A4/C22C3 ⊆ Aut C22×C6726(C2^2xC6).13A4288,986
(C22×C6).14A4 = C22×Q8⋊C9central extension (φ=1)288(C2^2xC6).14A4288,345
(C22×C6).15A4 = C23×C3.A4central extension (φ=1)72(C2^2xC6).15A4288,837
(C22×C6).16A4 = C2×C6×SL2(𝔽3)central extension (φ=1)96(C2^2xC6).16A4288,981

׿
×
𝔽