Extensions 1→N→G→Q→1 with N=C48 and Q=S3

Direct product G=N×Q with N=C48 and Q=S3
dρLabelID
S3×C48962S3xC48288,231

Semidirect products G=N:Q with N=C48 and Q=S3
extensionφ:Q→Aut NdρLabelID
C481S3 = C325D16φ: S3/C3C2 ⊆ Aut C48144C48:1S3288,274
C482S3 = C6.D24φ: S3/C3C2 ⊆ Aut C48144C48:2S3288,275
C483S3 = C3×D48φ: S3/C3C2 ⊆ Aut C48962C48:3S3288,233
C484S3 = C3×C48⋊C2φ: S3/C3C2 ⊆ Aut C48962C48:4S3288,234
C485S3 = C16×C3⋊S3φ: S3/C3C2 ⊆ Aut C48144C48:5S3288,272
C486S3 = C48⋊S3φ: S3/C3C2 ⊆ Aut C48144C48:6S3288,273
C487S3 = C3×D6.C8φ: S3/C3C2 ⊆ Aut C48962C48:7S3288,232

Non-split extensions G=N.Q with N=C48 and Q=S3
extensionφ:Q→Aut NdρLabelID
C48.1S3 = D144φ: S3/C3C2 ⊆ Aut C481442+C48.1S3288,6
C48.2S3 = Dic72φ: S3/C3C2 ⊆ Aut C482882-C48.2S3288,8
C48.3S3 = C325Q32φ: S3/C3C2 ⊆ Aut C48288C48.3S3288,276
C48.4S3 = C144⋊C2φ: S3/C3C2 ⊆ Aut C481442C48.4S3288,7
C48.5S3 = C3×Dic24φ: S3/C3C2 ⊆ Aut C48962C48.5S3288,235
C48.6S3 = C9⋊C32φ: S3/C3C2 ⊆ Aut C482882C48.6S3288,1
C48.7S3 = C16×D9φ: S3/C3C2 ⊆ Aut C481442C48.7S3288,4
C48.8S3 = C16⋊D9φ: S3/C3C2 ⊆ Aut C481442C48.8S3288,5
C48.9S3 = C48.S3φ: S3/C3C2 ⊆ Aut C48288C48.9S3288,65
C48.10S3 = C3×C3⋊C32central extension (φ=1)962C48.10S3288,64

׿
×
𝔽