Extensions 1→N→G→Q→1 with N=C22 and Q=C324Q8

Direct product G=N×Q with N=C22 and Q=C324Q8

Semidirect products G=N:Q with N=C22 and Q=C324Q8
extensionφ:Q→Aut NdρLabelID
C22⋊(C324Q8) = A4⋊Dic6φ: C324Q8/C12S3 ⊆ Aut C22726-C2^2:(C3^2:4Q8)288,907
C222(C324Q8) = C626Q8φ: C324Q8/C3⋊Dic3C2 ⊆ Aut C22144C2^2:2(C3^2:4Q8)288,735
C223(C324Q8) = C6210Q8φ: C324Q8/C3×C12C2 ⊆ Aut C22144C2^2:3(C3^2:4Q8)288,781

Non-split extensions G=N.Q with N=C22 and Q=C324Q8
extensionφ:Q→Aut NdρLabelID
C22.1(C324Q8) = C62.8Q8φ: C324Q8/C3⋊Dic3C2 ⊆ Aut C22144C2^2.1(C3^2:4Q8)288,297
C22.2(C324Q8) = C12.59D12φ: C324Q8/C3×C12C2 ⊆ Aut C22144C2^2.2(C3^2:4Q8)288,294
C22.3(C324Q8) = C62.15Q8central extension (φ=1)288C2^2.3(C3^2:4Q8)288,306
C22.4(C324Q8) = C2×C6.Dic6central extension (φ=1)288C2^2.4(C3^2:4Q8)288,780
C22.5(C324Q8) = C2×C12⋊Dic3central extension (φ=1)288C2^2.5(C3^2:4Q8)288,782