metabelian, supersoluble, monomial, A-group
Aliases: C3⋊Dic3, C6.3S3, C32⋊3C4, C2.(C3⋊S3), (C3×C6).2C2, SmallGroup(36,7)
Series: Derived ►Chief ►Lower central ►Upper central
C32 — C3⋊Dic3 |
Generators and relations for C3⋊Dic3
G = < a,b,c | a3=b6=1, c2=b3, ab=ba, cac-1=a-1, cbc-1=b-1 >
Character table of C3⋊Dic3
class | 1 | 2 | 3A | 3B | 3C | 3D | 4A | 4B | 6A | 6B | 6C | 6D | |
size | 1 | 1 | 2 | 2 | 2 | 2 | 9 | 9 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ4 | 1 | -1 | 1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | linear of order 4 |
ρ5 | 2 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | 1 | -2 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ10 | 2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | -2 | symplectic lifted from Dic3, Schur index 2 |
ρ11 | 2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | -2 | 1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ12 | 2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 1 | 1 | -2 | 1 | symplectic lifted from Dic3, Schur index 2 |
(1 20 29)(2 21 30)(3 22 25)(4 23 26)(5 24 27)(6 19 28)(7 31 14)(8 32 15)(9 33 16)(10 34 17)(11 35 18)(12 36 13)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(1 7 4 10)(2 12 5 9)(3 11 6 8)(13 24 16 21)(14 23 17 20)(15 22 18 19)(25 35 28 32)(26 34 29 31)(27 33 30 36)
G:=sub<Sym(36)| (1,20,29)(2,21,30)(3,22,25)(4,23,26)(5,24,27)(6,19,28)(7,31,14)(8,32,15)(9,33,16)(10,34,17)(11,35,18)(12,36,13), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,7,4,10)(2,12,5,9)(3,11,6,8)(13,24,16,21)(14,23,17,20)(15,22,18,19)(25,35,28,32)(26,34,29,31)(27,33,30,36)>;
G:=Group( (1,20,29)(2,21,30)(3,22,25)(4,23,26)(5,24,27)(6,19,28)(7,31,14)(8,32,15)(9,33,16)(10,34,17)(11,35,18)(12,36,13), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (1,7,4,10)(2,12,5,9)(3,11,6,8)(13,24,16,21)(14,23,17,20)(15,22,18,19)(25,35,28,32)(26,34,29,31)(27,33,30,36) );
G=PermutationGroup([[(1,20,29),(2,21,30),(3,22,25),(4,23,26),(5,24,27),(6,19,28),(7,31,14),(8,32,15),(9,33,16),(10,34,17),(11,35,18),(12,36,13)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(1,7,4,10),(2,12,5,9),(3,11,6,8),(13,24,16,21),(14,23,17,20),(15,22,18,19),(25,35,28,32),(26,34,29,31),(27,33,30,36)]])
C3⋊Dic3 is a maximal subgroup of
C32⋊2C8 S3×Dic3 D6⋊S3 C4×C3⋊S3 C32⋊7D4 C32⋊C12 C33⋊5C4 C6.5S4 C6.7S4 C32⋊3F5 C34⋊C4 C39⋊Dic3
C3⋊Dic3p: C32⋊2Q8 C32⋊4Q8 C9⋊Dic3 C3⋊Dic15 C3⋊Dic21 C3⋊Dic33 C3⋊Dic39 ...
C3⋊Dic3 is a maximal quotient of
He3⋊3C4 C33⋊5C4 C6.7S4 C32⋊3F5 C34⋊C4 C39⋊Dic3
C6p.S3: C32⋊4C8 C9⋊Dic3 C3⋊Dic15 C3⋊Dic21 C3⋊Dic33 C3⋊Dic39 ...
Matrix representation of C3⋊Dic3 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 12 | 1 |
0 | 0 | 12 | 0 |
0 | 12 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 2 | 0 | 0 |
11 | 9 | 0 | 0 |
0 | 0 | 12 | 1 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,12,12,0,0,1,0],[0,1,0,0,12,1,0,0,0,0,1,0,0,0,0,1],[4,11,0,0,2,9,0,0,0,0,12,0,0,0,1,1] >;
C3⋊Dic3 in GAP, Magma, Sage, TeX
C_3\rtimes {\rm Dic}_3
% in TeX
G:=Group("C3:Dic3");
// GroupNames label
G:=SmallGroup(36,7);
// by ID
G=gap.SmallGroup(36,7);
# by ID
G:=PCGroup([4,-2,-2,-3,-3,8,98,387]);
// Polycyclic
G:=Group<a,b,c|a^3=b^6=1,c^2=b^3,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C3⋊Dic3 in TeX
Character table of C3⋊Dic3 in TeX